模拟技术
A/D转换器的使用问题
ADμC812内集成的ADC转换模块,包含了8通道、12位、单电源A/D转换器,这些A/D转换器是由基于电容DAC的常规逐次逼近转换器组成的,接收的模拟输入范围为0至+VREF(+2.5V)。另外,此模块还为用户提供片内基准、校准特性,模块内的所有部件能方便地通过3个寄存器SFR接口来设置。总之,ADμC812的ADC模块具有与一般ADC芯片相比拟的性能,并且操作简单、可靠性高,采集速率可高达200kHz。
(1) 基准电压
A/D转换器的2.5V基准电压既可由片内提供,也可由外部基准经VREF引脚驱动。若使用内部基准,则在VREF和CREF引脚与AGND之间都应当连接100nF电容以便去耦。这些去耦电容应放在紧靠VREF和CREF引脚处。为了达到规定的性能,建议在使用外部基准时,该基准应当在2.3V和模拟电源AVDD之间。
由于片内基准高精度、低漂移且经工厂校准,并且当ADC或DAC使能时,在VREF引脚会出现此基准电压。因此,在进行系统扩展时,可将片内基准作为一个2.5V的参考电源来使用。若要把片内基准用到微转换器之内,则应在VREF引脚上加以缓冲并应在此引脚与AGND之间连接100nF电容。
在实际应用中应当特别注意,内部VREF将保持掉电直到ADC或DAC外围设备模块之一被它们各自的使能位上电为止。
(2) 模拟输入
与其他ADC芯片相比,ADμC812的ADC模块有一个缺点,就是ADC正常工作的模拟输入范围为0~+2.5V;而允许输入的电压范围只能为正电压(0~+5V)。经实验证明,若输入的模拟电压超过+2.5V(最大值为+5V),ADC的采样结果为最大值(0FFFH),虽然结果不对,但并没有影响ADμC812正常工作;但是,一旦输入负的模拟电压,则会影响ADμC812正常工作,表现为ADC的基准电压(VREF=+2.5V)消失和采样结果不正确,且若长时间输入负电压,将有可能损坏芯片。因此,在实际应用中,若发现启动ADC之后VREF端无电压,则应立即将芯片复位,并检查模拟输入信号的采集放大部分。在确保进入ADμC812的模拟信号在0~+2.5V范围内之后,才能再次启动ADC。实际应用时,应保证输入的模拟电压为正电平。
并行I/O端口的使用问题
与其他单片机一样,ADμC812也有4个通用数据端口(P0~P3)与外部器件交换数据,且除了用作通用I/O之外,某些端口还能实现外部存储器操作。另有一些端口则与器件上外围设备其他功能多路复用。
(1)P1口
值得注意的是,在ADμC812中端口0、2和3是双向端口,而端口1是只输入端口。在图中可以看到在P1口的电路中包括了位锁存器和输入缓冲器,但没有输出驱动器,因而P1口只能被配置为数字输入或模拟输入,不能用于输出。
当P1口用作模拟输入时,它对应于ADμC812内8通道模数转换的输入端口ADC0~ADC7。若在实际使用中,不须将8个通道ADC都用上,可将剩余的P1口引脚设置为数字输入,但此时须注意,它与标准的8051单片机用作数字输入的通用I/O口不同,认为高电平有效。因此,P1口用作数字输入时,在检测是否有输入信号之前,须将0写至对应端口,然后再判断。这就要求系统在设计时,应将用作数字输入的P1口外加1个下拉电阻,一般为几kΩ。
图P1口位锁存器与输入缓冲
(2) P2口
如前所述,ADμC812的P2口也是双向端口,包含输入缓冲器、输出锁存器和输出驱动器。通过与P2口相应的端口SFR,可将P2口的各端口引脚独立地配置为数字输入或数字输出,以及对它们进行读、写访问。这些与一般单片机P2口作通用I/O口的用法相同。
但当ADμC812接有外部数据存储器时,P2口不仅要用于输出中8位地址(A8~A15),还要用于输出高8位地址(A16~A23),此用法类似于P0口。不同的是,P0口是数据和地址总线复用,而P2口是中位、高位字节地址总线复用。因此,P2口在用于外扩大容量数据存储器时,也应通过一个锁存器将高位字节地址锁存,如图4所示。
图 P2口地址锁存
外部寻址问题
与其他单片机不同,ADμC812具有24根地址线。它可寻址的外部数据存储器空间为16MB,此超大容量的存储空间可满足众多应用领域的需求。由于外部数据存储器空间高达16MB,只用DPTR作间址寄存器是不够的。因此,ADμC812的数据指针是由3个8位寄存器来组成,分别是DPP(页字节寄存器)、DPH(高位字节寄存器)和DPL(低位字节寄存器),在进行内部和外部代码访问或外部数据访问时,由它们来提供存储器地址。与其他单片机一样,DPTR仍然是由DPH和DPL两个寄存器来构成,且用法相同;而DPP是用于传送A23~A16最高8位地址的寄存器,这相当于若将外部数据寄存器每64KB划分为1页,则不同的DPP值将对应于不同的页,因此取名为页寄存器。
SPI串口对P3口的影响
为便于MCU与各种外围设备进行通信,ADμC812提供了三种串行I/O端口:UART接口、I2C兼容的串行接口和串行外设接口(SPI)。其中,SPI接口是工业标准的同步串行接口,它允许MCU与各种外围设备以串行方式(8位数据同时同步地被发送和接收)进行通信。由于只须使用4条线就可与多种标准外围器件直接接口,因此,SPI接口在串口通信方面有着广泛的应用。
然而,我们在使用ADμC812的SPI串口进行通信时,发现它与其他芯片(具有SPI串口功能)不同,此SPI串口的使能会对P3口产生影响,其现象表现为:无论P3口实际输入电平为何值,P3口的内部锁存器都认定为高电平,从而程序中的JB或JNB等判断转移指令将失去作用。这说明,SPI串口使能将使P3口只能作为输出口来使用。因此,在同时使用SPI串口和P3口作输入口时,为避免错误发生,必须在每次P3口检测输入信号之前都将SPI串口禁止。
全部0条评论
快来发表一下你的评论吧 !