电子说
羧甲基赖氨酸是晚期糖基化终末产物代表之一,当达到一定数量时能促进糖尿病、肾病、动脉粥样硬化等疾病的发展和人体器官的快速衰老。某学者发现油炸薯片中CML 含量可达 22.2 mg/kg,较同类食品高,但实际生活中未将 CML 含量作为评价油炸薯片的指标。很重要的一方面原因是常见的 CML 检测方法各有弊端,而具有灵敏度高、可利用性好、稳定性较强等特点的液相色谱-质谱法,能对食品中 CML 进行准确的定量分析,但其操作繁琐、耗时耗力、价格昂贵等。因此,实现快速、高效地检测低剂量 CML,对避免食用高含量CML 的油炸薯片,保证消费者健康及马铃薯产业的发展具有重要意义。
目前,国内外已有对油炸薯片中有害成分和吸油量的分析,也有对 CML 的抑制研究,但少有对 CML 快速检测方法的探讨。高光谱图像技术具有分辨率高、曲线连续、无损伤、无污染、可对物质特征或成分进行精确探测等特点。近年来,高光谱技术在城市测绘、精确农业、环境监测、军事监视以及计算机视觉等工业领域得到了普遍的认可和关注。并且,由于高光谱光谱反射率与理化参数的相关性,可建立各种理化参数的光谱监测模型,所以在测定食品或农产品中重要营养物质、有害成分含量等方面的研究较多,在监测食品或农产品质量方面取得重大进展。国内外也有利用高光谱成像快速检测鲜切马铃薯片或块茎的相关研究,但鲜见采用高光谱成像技术预测油炸薯片中 CML 含量的报道。本文采用高光谱图像技术,以具有不同工艺参数的油炸薯片为研究对象,借助液相色谱-质谱法测定CML 含量,构建 3 种预测模型并进行对比。最终确定最佳快速稳健模型,为寻找高效的 CML 低剂量检测设备提供依据和手段,为更好地服务于食品企业,保证产品质量。
1材料与方法
1.1 材料与试剂
试验所用样品为自制油炸薯片,采用如下制作过程:马铃薯粉加水 1∶1(质量比),和匀,将其揉成长面团,然后做成厚度为 1.0 cm 的面块,再熟化、冷却,最后切为厚 1.5 mm 的小片,油炸。试验采用不同的油炸温度和时间如表 1 所示,共 8 个等级。本研究采用粉碎后的油炸薯片作为样品。试剂采用CML 标准品(纯度为 98.0%)和 CML-D4 同位素内标(化学纯度为 98.0%,同位素纯度为 97.9%)。
表 1 油炸温度和时间
1.2 仪器与设备高光谱成像采集系统如图 1 所示,主要由 1 台高光谱摄像仪 、1 个传送装置(自制)和 1 台计算机组成。高光谱摄像仪通过 USB 2.0 接口连接计算机,软件作为驱动控制摄像仪的平台,电脑实时记录和存贮数据信息。
图1 光谱图像采集系统
固相萃取柱(体积 3 m L,填料质量 60 mg,填料粒径 30 μm)、 超纯水系统;真空固相萃取装置;圆形水浴氮吹仪;超高效液相色谱仪、亲 水 作 用 色 谱 柱 (2.1 mm ×100 mm,1.7 μm)、三重四极杆串联质谱仪。
1.3 试验方法1.3.1 CML 含量的测定
液质联用测定油炸薯片中 CML 含量与高光谱图像采集同步。首先对薯片粉末进行脱脂和水解,然后收集上清液,采用液相色谱-质谱法测定。
1.3.1.1 液相检测条件
流动相:A 相为 0.1%甲酸水溶液,B 相为乙腈;进行梯度洗脱,梯度洗脱参数如表 2 所示。柱温:35 ℃;进样量:5 μL;运行时间 7 min。
表 2 梯度洗脱参数
1.3.1.2 质谱检测条件
离子源:电喷雾正离子模式;监测模式:多反应监测;毛细管电压:3.5 k V;锥孔电压:20 V;源温度:150 ℃;脱溶剂气温度:400 ℃;脱溶剂气流速:700 L/h;碰撞能量:15 V;MRM 模式:CML 质荷比m/z 205.22 ~m/z 84.00 定量 ,m/z 205.22 ~m/z 130.00 定性,CML-D4 m/z 209.00~m/z 87.70 定性。
1.3.2 高光谱图像的采集
样本高光谱图像采集前,首先采集标准全白图像和全黑图像,然后再将已备好的(40±0.5)g 油炸薯片粉末,作为一个待测样本,均匀地平铺在直径为100 mm 的培养皿中,放置在传送带上,传送装置的速度为 1.20 mm/s,相机的曝光时间为 90 ms,物距为 350 mm。光谱仪的光谱范围为 371.05 nm~1 023.82 nm,光谱分辨率为 2.8 nm,采样间隔为 0.51 nm。采集数据时,摄像头在传送带方向的垂直方向作横向扫描,得到的是所扫区域全部像素点在 1 288 个波长处的图像数据。同时随着薯片的前进,完成所需区域油炸薯片图像数据的采集。为获得理想区域的图像,设定高光谱扫描程序中Width 和 Height 的参数都是 800。即图像扫描行数为每幅 800 行,每行扫描的像素点数为 800 个,得到的高光谱图像分辨率为 800 像素×800 像素。所以,对于每一个油炸薯片样本,采集后最终得到一个大小为 800×800×1 288 的高光谱图像数据块。最后,为了消除成像仪的暗电流和光源强度分布不均造成的影响,需要对每个油炸薯片样本高光谱图像进行黑白标定。采用标准全白图像和标准全黑图像对采集到的原始高光谱图像数据块按照公式进行标定,得到黑白校正后的高光谱图像数据。黑白校正公式如下。
式中:R 为黑白校正后的图像;L 为原始反射图像;W 为全白反射图像;B 为全黑反射图像。
1.3.3 模型建立方法与数据处理方法
本研究采用主成分回归、偏最小二乘回归和BP 神经网络3 种方法建立模型。平均光谱数据的提取借助软件 ENVI5.1;黑白处理、标准散射校正预处理及模型的构建均在 MATLAB R2014a 中编程实现。
2结果与分析
2.1 图象的采集与光谱预处理试验中,每类油炸薯片分别选取 50 个重复样本,8类样品共 400 个样本。相机拍摄各类油炸薯片图像如图 2 所示,在可见光波长 658.77 nm 下的细节图像如图 3 所示。选择标准正态变换(standard normal variate,SNV)作为光谱预处理方法,用来消除油炸薯片固体颗粒大小不一、表面不均匀产生的散射以及光程变化对漫反射光谱造成的影响。400 个油炸薯片样本在处理前后的光谱曲线图如图 4 所示。
图 2 8 类样本的可见光图像
图 3 8 类样本在 658.77 nm 波长处的高光谱图像
图 4a 是 400 个样本在 1 288 个波段的原始平均光谱反射图。由于首尾波段信噪比较低,所以除去371.05 nm~472.86 nm 和 880.49 nm~1 023.82 nm 的数据,得到从第 200 到 1 000 个波段的信息,即剩余 801 个波段的光谱值。图 4b 是所有样本在 801 个波段的原始光谱值经过黑白校正后得到。图 4c 是图 4b 经过标准正态变换后的光谱图。很明显,经过 SNV 处理过的光谱曲线具有清晰的吸收峰,且每类薯片的光谱各有差别,这有利于预测模型的建立。
2.2 油炸薯片中 CML 含量的测定结果
每种油炸薯片样品取 3 个平行进行测定,并确定这 3 次独立测定结果的绝对值差小于等于其算术平均值的 10%,将其平均值作为此类油炸薯片样品的实际CML 含量值,结果如表 3 示。从表 3 看出,当温度在 180 ℃时,随着时间的延长,CML 含量呈现先增多后减少的趋势,160 s 达到最大值为 12.74 μg/g,而后随着时间的延长 CML 含量有所下降。当温度 220 ℃、时间 240 s 时,CML 含量比 80 s时明显降低,仅为 5.17 μg/g。这与韩文凤等的研究结果相一致:反应温度对体系中 CML 含量的影响较为复杂;在高温加热的反应体系中,其含量随着反应时间的延长呈先增大后减小的趋势。采用此液质联用检测方法,耗时费力,成本高,且有毒。以下采用高光谱图像技术提取数据,借助理化检测方法测定的结果建立不同模型,预测 CML 含量。
2.3 采用不同方法建立预测模型
随机选择全部样本的 70%作为训练集,剩余 30%样本作为测试集。本研究选用预测正确率(相对误差不超过真实值的 5%为预测正确)、决定系数和均方根误差 3 个结果指标对 3 种建模方法的精度进行评价。
2.3.1 主成分回归
前 15 个主成分的贡献率见表 4,不同方法建立预测模型结果对比见图 5。
图 4 400 个油炸薯片样本的光谱曲线
表 3 8 种油炸薯片样品的 CML 含量测定结果
注:同列不同字母表示差异显著(p<0.05),相同字母表示差异不显著(p≥0.05)
表 4 前 15 个主成分得分贡献率
注:…表示由于主成分得分贡献率逐渐减小,第 4 个到第 15 个主成分间的贡献率都在 0.069 4%~0.000 1%间,显示出来意义不大,为减少冗余,故省略了中间。
由表 4 可见,前 15 个主成 分 得 分 可 以 呈 现99.999%以上的原始光谱信息。因此,选取前 15 个主成分作为样本集特征光谱,即将 801 个波长压缩为 15 个新变量作为特征变量,明显提升了模型的运行效率。由图 5a 可知预测效果不理想,主成分回归预测正确率为 30.83%,决定系数为 0.85,均方根误差为 1.3。
2.3.2 偏最小二乘回归
基于 801 个波段数的平均光谱反射值建立偏最小二乘回归模型,选择 15 个主成分,所获得的测试集决定系数为 0.84,均方根误差为 1.15,预测正确率为55.00%。如图 5b 所示,与主成分回归对比,预测正确率稍高,决定系数近似。这说明,此模型仍然不能满足预测油炸薯片中 CML 的含量。
2.3.3 BP 神经网络
运用 BP 神经网络模型建立光谱值与油炸薯片中CML 含量之间的映射关系,首先提取全部波段下图像的平均光谱反射值,然后去除首尾具有噪声的光谱,并对其进行标准正态变量变换光谱预处理。最后对801 列光谱数据运用主成分分析融合,选取代表原始信息 99.98%以上的前 6 个主成分作为神经网络的输入变量部分,设计模型结构,确定传递函数和训练函数,设置学习速率、误差、迭代次数等参数,建立具有稳健性和精确度的 BP 神经网络预测模型。
a.主成分回归预测结果图;b.偏最小二乘回归预测结果图;c.BP 神经网络预测结果图。
图 5 不同方法建立预测模型结果对比
基于 400 个样本在第 200 到 1 000 个波段下各个高光谱图像的平均光谱反射值所建立的 BP 神经网络结构,预测模型的结构设为 15-10-1,隐含层和输出的 传 递 函 数 分 别 为tansig 和 logsig, 训 练 函 数 为traincgf。学习率设定为 0.01,误差设定为 1×10-6。运行结束,迭代次数共为 4 969 次,运行时间 21 s,误差达到 3.12×10-5。预测结果如图 5c 所示,所获得的测试集决定系数为 0.99,均方根误差为 0.22,预测正确率为 99.67%。2.3.4 对比结果以建模集和预测集的决定系数、均方根误差、预测正确率作为 3 种建模方法,预测 CML 含量的评价标准,对比结果如表 5 所示。
表 5 不同建模方法的 CML 含量预测结果对比
由表 5 可知,BP 神经网络预测正确率较高,为预测油炸薯片中 CML 含量最优的模型。
2.3.4 最优预测模型的选择与稳健性分析
对比显示,基于第 200 到 1 000 波段下的每个油炸薯片样本图像的平均光谱反射值,预测 CML 含量建立的 BP 神经网络模型最优。为验证此模型的稳健性,从油炸薯片样本的高光谱图像数据信息中,随机抽取5 组不同的训练集和测试集。保证模型结构及所有参数不变,用这 5 组数据分别对 BP 神经网络模型进行训练和测试,结果如表 6 所示。
表 6 不同测试集的测试结果对比
从表 6 中可以看出,油炸薯片 CML 含量预测正确率平均值为 96.23%,决定系数平均值为 0.99,均方根误差平均值为 0.22。这说明,该 BP 神经网络模型具有可靠的稳健性和精度。
4结 论
以含有不同 CML 量的油炸薯片为检测对象,用高光谱成像仪采集其在 371.05 nm~1 023.82 nm 波长下的图像,先提取其第 200 到 1 000 波段下图像的平均光谱反射值,然后经过黑白校正和标准正态变量变换光谱预处理,最后对比主成分回归、偏最小二乘回归和 BP 神经网络 3 种模型建立方法。结果显示,基于BP 神经网络所建立的油炸薯片中 CML 含量预测模型最为准确。并且经过验证,该预测模型兼备准确性和稳健性。这说明,高光谱图像技术融合 BP 神经网络能够实现油炸薯片中 CML 含量的准确预测,可为食品中CML 含量快速无损检测提供重要依据。
莱森光学(深圳)有限公司是一家提供光机电一体化集成解决方案的高科技公司,我们专注于光谱传感和光电应用系统的研发、生产和销售。
审核编辑 黄昊宇
全部0条评论
快来发表一下你的评论吧 !