如何扩大卷积来消除与Transformer的性能差距

描述

本文分析了是否可以通过策略性地扩大卷积来消除与Transformer的性能差距。

首先,先让我 brainstorm 一下。当你看到 neural network scaling 这个词的时候你能想到什么?先不要看下文,把你想到的东西记下来。说不定这个简单的 brainstorm 能让你找到绝妙的 idea。

我想大多数人想到的应该是模型大小(宽度 + 深度),数据大小,或者图片像素等等。有没有哪位小科学家曾经想过去 scale convolutional kernels?scale 卷积核同样能增大模型的参数,但能带来像宽度和深度一样的增益吗?我这篇文章从这个角度出发深入探究了超大卷积核对模型表现的影响。我发现现有的大卷积核训练方法的瓶颈:现有的方法都无法无损的将卷积核 scale 到 31x31 以上,更别说用更大的卷积来进一步获得收益。

我这篇文章的贡献可以总结为以下几点:

(1)现有的方法可以将卷积核增大到 31x31。但在更大的卷积上,例如 51x51 和 61x61,开始出现明显掉点的现象。(2)经典的 CNN 网络,如 ResNet 和 ConvNeXt,stem cell 都采用了 4× 降采样。所以对典型的 224×224 ImageNet 来说,51×51 的极端核已经大致等于全局卷积。和全局注意力机制一样,我推测全局卷积也存在着捕捉局部低级特征的能力不足的问题。(3)基于此观察,我提出了一套训练极端卷积核的 recipe,能够丝滑的将卷积核增大到 61x61,并进一步提高模型的表现。我的方法论主要是基于人类视觉系统中普遍存在的稀疏性提出来的。在微观层面上,我将 1 个方形大卷积核分解为 2 个具有动态稀疏结构的,平行的长方形卷积核,用来提高大卷积的可扩展性;在宏观层面上,我构建了一个纯粹的稀疏网络,能够在提升网络容量的情况下保持着和稠密网络一样的参数和 FLOPs。(4)根据这个 recipe,我构造了一个新型网络结构 Sparse Large Kernel Network,简称 SLaK。SLaK 搭载着有史以来最大的 51x51 卷积核,能够在相似的参数量和 FLOPs 的条件下,获得比最新先进的 ConvNeXt,Swin Transformer 和 RepLKNet 更好的性能。(5)最后,作者认为本文最重要的贡献是 sparsity,通常作为模型压缩的“老伙计”,can be a promising tool to boost neural network scaling。

Pytorch 开源代码:https://github.com/VITA-Group/SLaK

一、引言

随着 vison transformer 在各个领域的大放异彩,CNN 和 Vision Transformer 的竞争也愈演愈烈。在愈发强大的各类 attention 变种的推进下,ViT 取代 CNN 这个视觉老大哥的野心已经路人皆知。而 CNN 在全局和局部注意力的启发下也带着大卷积乘风破浪回来。前浪有 ConvNeXts 配备着 7x7 卷积核和 swin transformer 精巧的模型设计,成功的超越了后者的表现。

数据

后浪中 RepLKNet 用结构再参数化成功的克服了大卷积在训练上的困难,一度将卷积增大到了 31x31,并达到了和 Swin Transformer 相当的表现。在下游任务上更是超过了后者。但与 Swin Transformer 等高级 ViT 的扩展趋势相比,随着卷积核的持续扩大,大卷积核有着明显的疲软趋势。

数据

二、超越 31x31 超大卷积核的训练 recipe

本文主要想探究的问题是:是否可以通过采用极致大卷积核(超过 31x31)来进一步提高 CNNs 的表现?为了回答这个问题,我在最近大火的 ConvNeXt 上对大卷积进行了系统的研究。我采用了和 ConvNeXt 一模一样的训练设定和超参并将卷积核放大到 31x31,51x51 和 61x61。受限于计算资源,我这里将模型训练到 120 个 epoch,仅仅用来观察卷积增大的趋势,得到了如下 3 个主要结论。

结论 1:现有的技术无法无损的将卷积核扩展到 31x31 以上

现有的大卷积核技术主要有两个,一是直接暴力 scale up 卷积核的 ConvNeXt,二是增加一个额外的小卷积层来辅助大卷积的训练,训练完成之后再用结构化再参数将小卷积核融入大卷积核里,即 RepLKNet。我分别测试了这两种方法在极致大卷积上的表现,如下表所示:

数据

原始 ConvNeXt 采用的是 7x7 卷积核,ImageNet 上能达到 81.0% 的 top1 精度。但是当卷积逐渐增大的时候,ConvNeXt 出现了明显的掉点。相比之下,RepLKNet 成功的把卷积核增大到 31x31 并带来了超过 0.5 个点的可观提升。但是当卷积核增大到 51x51 甚至是 61x61 的时候,RepLKNet 也逐渐乏力。尤其是在 61x61 上,RepLKNet 的 FLOPs 增加了两倍,精度却反而降低了 0.2%。

如果仔细分析 ConvNeXt 模型的特点,51x51 和 61x61 卷积核带来的精度下降是可以理解的。如下图所示,现阶段最先进的模型的 stem cell 都不约而同的采用了 stride=4 的结构将输入图片的分辨率缩减到了原来的 1/4。那么对经典的 224x224 iamgenet 来说,通过 stem cell 之后,feature 的大小就只有 56x56 了。所有 51x51 和 61x61 规模的卷积核就已经是全局水平的卷积核。一种合某些理想的特性,比如有效的局部特性。同样的现象我在 ViTs 的类似机制中也观察到过,即局部注意力通常优于全局注意力。在此基础上,我想到了通过引入局部性来解决这个问题的机会。

数据

结论 2:用两个平行的,长方形卷积来代替方形大卷积可以丝滑的将卷积核扩展到 61x61

这里我采用的方法是将一个常用的 MxM 方形卷积核分解为两个平行的 MxN+NxM 长方形卷积核。如下图最右边所示。这里经验性的设置 N=5。

数据

这种分解不仅继承了大卷积捕获远程依赖关系的能力,而且可以利用短边来提取局部上下文特征。我选用了两个 parallel 卷积核相加而不是以往的两个 sequential 卷积核相叠是因为先进行 MxN 卷积再进行 NxM 卷积可能会因为 N 过小而丢失一部分长距离的信息(有待于去验证)。果然与预想的一样,这样分解可以让我逆转大卷积带来精度下降的趋势。由于该分解减少了 FLOPs,相比不分解(即 RepLKNet)在 31x31 卷积上会牺牲掉少量的精度 (0.2%)。但是,随着卷积大小增加到全局卷积,它可以惊人地将 Kernel-size 扩展到 61x61 并带来更好的性能指标。

数据

更重要的是,随着卷积核的增大,现有的大卷积训练技术的内存和计算开销会呈现二次方的增长。这种分解方式保持了线性增长的趋势并且可以极大的减少大卷积核带来的开销。如下图所示。在中等卷积 31x31 上,参数量和计算量基本豆差不多。但是继续增大卷积核的时候,RepLKNet 的计算量二次方的增长,而我的方法能基本保持不变。不要小看这一点,因为现在已经有很多工作指明了一个明显的趋势:高分辨率训练(Swin Transfermor V2 使用了高达 1536x1536 的像素)能够带来明显的增益。这种极大分辨率上,51x51 分辨率明显已经不足以去获得足够大的感受野。我很可能需要 100 + 的卷积核去获得足够大的感受野。

数据

结论 3:拥有动态稀疏性的卷积核极大的提高了模型的容量同时又不增加模型大小

最近提出的 ConvNeXt 重新访问了 ResNeXt 中 “use more groups, expand width” 的准则,使用增加宽度的 depth-wise 卷积来增加 model capacity。在本文中,我用 dynamic sparsity 进一步扩展的这一原则,即“use sparse groups, expand more”。关于 dynamic sparsity 的介绍,请移步 https://zhuanlan.zhihu.com/p/376304225 看我之前的分享。

数据

具体来说,我首先用稀疏卷积代替密集卷积,其中每一层的稀疏度是基于 SNIP 的稀疏比率提前决定的。构建完成后,我采用了动态稀疏度方法来训练模型。具体来说就是在模型训练一段时间后我会采用参数剪枝的方法去 prune 掉一部分相对不重要的参数,紧接着去随机的涨同样数量的参数来保证总体训练参数的固定。这样做可以动态地适应稀疏权值,从而获得更好的局部特征。由于在整个训练过程中模型都是稀疏的,相应的参数计数和训练 / 推理 FLOPs 只与模型的稀疏度成比例。为了评估,这里以 40% 的稀疏度稀疏化分解后的 kernel,并将其性能报告为 “稀疏分解” 组。可以在表 2 的中间一列中观察到,动态稀疏性显著降低了模型的 FLOPs(超过 2.0G),并导致了暂时的性能下降。

数据

接下来,我展示了动态稀疏性的 high efficiency 可以有效地转化成 high scalability。例如,使用相同的稀疏性(40%),我可以将模型宽度扩展 1.3 倍,但是总体的模型参数和 FLOPs 却仍然和稠密网络一样,并显著涨点。在极端的 51×51 卷积下,性能可以从 80.5% 直接提高到 81.6%。值得注意的是,配备了 61×61 的内核之后,我的模型可以超越 RepLKNet 的精度,同时还节省了 55% 的 FLOPs。

数据

三、Sparse Large Kernel Network - SLaK

我利用上面发现的 recipe 在 ConvNeXt 上直接加载了 51x51 的卷积核,得到了 SLaK-T/S/B 模型。在不改变任何 ConvNeXt 原有的训练设置和超参的情况下,SLaK 在 ImageNet-1K 分类数据集,ADE20K 分割数据集、PASCAL VOC 2007 检测数据集,都超过了 Swin Transformer,ConvNeXt,和 RepLKNet 的表现。实验结果突出了极致卷积核在下游视觉任务中的关键作用。

数据

数据

数据

四、感受野分析

前面我猜测新方法既能够保证对远距离相关性的获取,又能够捕捉到近距离重要的特征。接下来通过对感受野的分析来证明这种想法。我计算了输入图片的像素对不同模型决策的贡献度,并把贡献度加加回到 1024x1024 的图片上。我可以发现原始的 ConvNeXt 用 7X7 卷积只用了中间很小一部分的像素来做决策;RepLKNet 用 31x31 的卷积把感受野扩大了许多;而 SLaK 进一步用 51x51 的卷积核几乎达到了全局感受野。值得注意的在大的感受野之上,能明显的看到一个小的正方形堆叠着,证明了我能捕捉小范围的低级特征的猜想。

数据

  
      审核编辑:彭静
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分