近期 RT-Thread 工程师完成了基于瑞萨 CPK-RA2L1 开发板的BSP适配,支持了GPIO、UART、I2C、SPI、ADC、DAC、PWM、CAN、on-chip Flash、Watchdog、RTC等外设驱动,并在瑞萨工程师支持下完成了电源组件(低功耗LPM)适配,经实际测量,芯片在Software Standby阶段可达到的最低平均电流约为0.696uA,本篇笔记记录低功耗的适配和应用。
可通过以下链接查看RA MCU BSP:
https://github.com/RT-Thread/rt-thread/tree/master/bsp/renesas
瑞萨 RA 系列 MCU 开发板的 BSP 制作教程:
https://www.rt-thread.org/document/site/#/rt-thread-version/rt-thread-standard/tutorial/make-bsp/renesas-ra/RA%E7%B3%BB%E5%88%97BSP%E5%88%B6%E4%BD%9C%E6%95%99%E7%A8%8B
48MHz Arm Cortex-M23 CPU内核
支持1.6V-5.5V宽范围工作电压
超低功耗,提供64μA/MHz工作电流和250nA软件待机电流,快速唤醒时间小于5µs
采用瑞萨110nm低功耗工艺,用于运行和睡眠/待机模式,并且专门为电池驱动应用设计了特殊掉电模式
灵活的供电模式可实现更低的平均功耗,以满足多种应用需求
集成了新一代创新型电容式触摸感应单元,无需外部元器件,降低BOM成本
通过高精度(1.0%)高速振荡器、温度传感器和多种供电接口端口等片上外围功能降低系统成本
后台运行的数据闪存,支持一百万次擦除/编程循环
采用LQFP封装,产品涵盖48引脚至100引脚封装
低功耗基础
低功耗的本质是系统空闲时 CPU 停止工作,中断或事件唤醒后继续工作。在 RTOS 中,通常包含一个 IDLE 任务,该任务的优先级最低且一直保持就绪状态,当高优先级任务未就绪时,OS 执行 IDLE 任务。一般地,未进行低功耗处理时,CPU 在 IDLE 任务中循环执行空指令。RT-Thread 的电源管理组件在 IDLE 任务中,通过对 CPU 、时钟和设备等进行管理,从而有效降低系统的功耗。
在上图所示,当高优先级任务运行结束或被挂起时,系统将进入 IDLE 任务中。在 IDLE 任务执行后,它将判断系统是否可以进入到休眠状态(以节省功耗)。如果可以进入休眠, 将根据芯片情况关闭部分硬件模块,OS Tick 也非常有可能进入暂停状态。此时电源管理框架会根据系统定时器情况,计算出下一个超时时间点,并设置低功耗定时器,让设备能够在这个时刻点唤醒,并进行后续的工作。当系统被(低功耗定时器中断或其他唤醒中断源)唤醒后,系统也需要知道睡眠时间长度是多少,并对OS Tick 进行补偿,让系统的OS tick值调整为一个正确的值。
PM组件是RT-Thread系统中针对电源管理而设计的基础功能组件, 组件采用分层设计思想,分离架构和芯片相关的部分,提取公共部分作为核心。支持多种运行模式和休眠模式的管理切换,以及低功耗定时器的管理。
PM 组件有以下特点:
PM 组件是基于模式来管理功耗
PM 组件可以根据模式自动更新设备的频率配置,确保在不同的运行模式都可以正常工作
PM 组件可以根据模式自动管理设备的挂起和恢复,确保在不同的休眠模式下可以正确的挂起和恢复
PM 组件支持可选的休眠时间补偿,让依赖 OS Tick 的应用可以透明使用
PM 组件向上层提供设备接口,如果使用了设备文件系统组件,那么也可以用文件系统接口来访问
PM组件支持的休眠模式有
RA2 MCU支持的LPM类型有:
Sleep mode
Software Standby mode
Snooze mode
低功耗模式转换和触发源如图所示:
不同模式间的切换如图所示,从图中也可以看出三种模式的功耗关系是Sleep>Snooze>Standby。
RA2芯片的休眠模式对应PM组件的模式关系:
要使用RA2系列芯片的LPM功能,需要进入bsp enesas a2l1-cpk目录。
在menuconfig中使能LPM驱动,并勾选要开启的休眠模式,然后保存配置,生成MDK5工程。
打开PM组件和驱动后,需要增加idle的线程栈大小,可改为1024。
打开生成的MDK5工程project.uvprojx,然后打开FSP配置工具添加LPM相关配置。下图是需要添加的stack,包括三种LPM模式的配置以及低功耗定时器AGT1。
创建LPM如下图所示新建r_lpm,需要根据使用的模式进行配置且不同模式要创建不同的r_lpm。下面将分别介绍三种不同模式的配置,创建步骤就不再赘述。
创建出r_lpm后需要修改Name和Low Power Mode这两个配置项。Name需要改为g_lpm_sleep,因为在驱动文件中已经定义了sleep模式对应的stack名称。Low Power Mode选择Sleep mode即可。
Name需要改为g_lpm_sw_standby。Low Power Mode选择Software Standby mode即可。
另外在此模式下还需要配置唤醒MCU的中断源,因为会使用到AGT1做为低功耗定时器所以AGT1的中断需要勾选。如果在应用中还需要其他中断源在此模式下唤醒MCU,则勾选对应选项即可。
Name需要改为g_lpm_sw_standby_with_snooze。Low Power Mode选择Snooze mode即可。
另外在此模式下同样要配置唤醒MCU的中断源,因为会使用到AGT1做为低功耗定时器所以AGT1的中断需要勾选。如果在应用中还需要其他中断源在此模式下唤醒MCU,则勾选对应选项即可。
在驱动中使用了MCU的AGT1做为PM组件的低功耗定时器,用于在休眠状态下的系统时钟补偿。
完成上述配置步骤就已经把LPM低功耗模式的相关配置做完了。然后再根据应用要实现的功能配置其他外设。
上文介绍了在RT-Thread的RA2L1上怎么配置LPM的不同模式,接下来就用一个小DEMO来验证下MCU在各种模式下的工作情况。
低功耗DEMO要实现的功能是,在CPK-RA2L1开发板上用S1按钮切换不同的低功耗模式,并在msh中打印出模式切换的提示信息。要实现这个功能需要在刚才的基础上添加一个低功耗的唤醒源。
创建IRQ中断,IRQ中断选择通道3,详细配置如下。
在刚才的Snooze和Standby模式的配置里添加IRQ3的唤醒源
然后保存并生成配置代码。
#include
#ifdef BSP_USING_LPM
#include
#include
#include
#define WAKEUP_APP_THREAD_STACK_SIZE 512
#define WAKEUP_APP__THREAD_PRIORITY RT_THREAD_PRIORITY_MAX / 3
#define WAKEUP_EVENT_BUTTON (1 << 0)
static rt_event_t wakeup_event;
#define USER_INPUT "P004"
#define LED2_PIN "P501" /* Onboard LED pins */
void rt_lptimer_init(rt_lptimer_t timer,
const char *name,
void (*timeout)(void *parameter),
void *parameter,
rt_tick_t time,
rt_uint8_t flag);
rt_err_t rt_lptimer_detach(rt_lptimer_t timer);
rt_err_t rt_lptimer_start(rt_lptimer_t timer);
rt_err_t rt_lptimer_stop(rt_lptimer_t timer);
rt_err_t rt_lptimer_control(rt_lptimer_t timer, int cmd, void *arg);
static struct rt_lptimer lptimer;
static void timeout_cb(void *parameter)
{
rt_interrupt_enter();
rt_kprintf(" lptimer callback ");
rt_interrupt_leave();
}
static void lptimer_init(void)
{
rt_lptimer_init(&lptimer,
"lpm",
timeout_cb,
(void*)&wakeup_event,
1000,
RT_TIMER_FLAG_PERIODIC);
}
static void lptimer_stop(void)
{
rt_lptimer_stop(&lptimer);
}
static void lptimer_start(void)
{
rt_lptimer_start(&lptimer);
}
static void led_app(void)
{
static uint8_t key_status = 0x00;
rt_uint32_t led2_pin = rt_pin_get(LED2_PIN);
rt_pin_write(led2_pin, PIN_HIGH);
switch(key_status%4)
{
case 0:/* IDLE */
lptimer_stop();
rt_pm_release(PM_SLEEP_MODE_NONE);
rt_kprintf(" request:IDLE ");
rt_pm_request(PM_SLEEP_MODE_IDLE);
break;
case 1:/* DEEP */
lptimer_stop();
lptimer_start();
rt_pm_release(PM_SLEEP_MODE_IDLE);
rt_kprintf(" request:DEEP ");
rt_pm_request(PM_SLEEP_MODE_DEEP);
break;
case 2:/* STANDBY */
lptimer_stop();
lptimer_start();
rt_pm_release(PM_SLEEP_MODE_DEEP);
rt_kprintf(" request:STANDBY ");
rt_pm_request(PM_SLEEP_MODE_STANDBY);
break;
case 3:/* NONE */
lptimer_stop();
rt_pm_release(PM_SLEEP_MODE_STANDBY);
rt_kprintf(" request:NONE ");
rt_pm_request(PM_SLEEP_MODE_NONE);
break;
default:
break;
}
key_status++;
rt_pin_write(led2_pin, PIN_LOW);
}
static void wakeup_callback(void* p)
{
rt_event_send(wakeup_event, WAKEUP_EVENT_BUTTON);
}
void wakeup_sample(void)
{
/* init */
rt_uint32_t pin = rt_pin_get(USER_INPUT);
rt_kprintf(" pin number : 0x%04X ", pin);
rt_err_t err = rt_pin_attach_irq(pin, PIN_IRQ_MODE_RISING, wakeup_callback, RT_NULL);
if (RT_EOK != err)
{
rt_kprintf(" attach irq failed. ");
}
err = rt_pin_irq_enable(pin, PIN_IRQ_ENABLE);
if (RT_EOK != err)
{
rt_kprintf(" enable irq failed. ");
}
}
static void wakeup_init(void)
{
wakeup_event = rt_event_create("wakup", RT_IPC_FLAG_FIFO);
RT_ASSERT(wakeup_event != RT_NULL);
wakeup_sample();
}
static void pm_mode_init(void)
{
rt_pm_release_all(RT_PM_DEFAULT_SLEEP_MODE);
rt_pm_request(PM_SLEEP_MODE_NONE);
}
void pm_test_entry(void* para)
{
/* 唤醒回调函数初始化 */
wakeup_init();
/* 电源管理初始化 */
pm_mode_init();
lptimer_init();
while (1)
{
/* 等待唤醒事件 */
if (rt_event_recv(wakeup_event,
WAKEUP_EVENT_BUTTON,
RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR,
RT_WAITING_FOREVER, RT_NULL) == RT_EOK)
{
led_app();
}
}
}
int pm_test(void)
{
rt_thread_t tid = rt_thread_create(
"pmtest",pm_test_entry,RT_NULL,512,10,10);
if(tid)
rt_thread_startup(tid);
return 0;
}
MSH_CMD_EXPORT(pm_test, pm_test);
// INIT_APP_EXPORT(pm_test);
#endif
将DEMO代码加入到工程中,可以直接添加到hal_entry.c或新建一个源文件。
然后编译下载。开发板连接串口工具,输入pm_test
命令启动测试DEMO。
按下S1按钮切换工作模式,在DEEP、STANDBY模式下会启动低功耗定时器,当定时唤醒后会打印出回调接口的提示信息。
经测试:
(1)串口通中输入“pm_test”,观测到电流在8.6mA和5.8mA之间变化。
(2)按下S1后,串口通中打印信息为“requestIDLE”,此时电流约为2.2mA。
(3)再次按下S1后,串口通中打印信息为“requestDEEP”,此时电流约为1593uA,并间隔产生lptimer中断。
(4)再次按下S1后,串口通中打印信息为“requestSTANDBY”,此时电流约为2.4uA,并间隔产生lptimer中断。
(5)再次按下S1后,串口通中打印信息为“requestNONE”,恢复为(1)的电流值,然后可循环执行此流程。
全部0条评论
快来发表一下你的评论吧 !