CAN总线相关内容

接口/总线/驱动

1140人已加入

描述

CAN是控制器局域网络(Controller Area Network)的简称,它是由研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准(ISO11519以及ISO11898),是国际上应用最广泛的现场总线之一。   两个标准的差异点如下:  

CAN总线

  CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。   近年来,它具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强及振动大的工业环境。   我们来贴一个车载网络构想图。  

CAN总线

 1 CAN物理层  与I2C、SPI等具有时钟信号的同步通讯方式不同,CAN通讯并不是以时钟信号来进行同步的,它是一种异步通讯,只有CAN_High和CAN_Low两条信号线,共同构成一组差分信号线,以差分信号的形式进行通讯。我们来看一个示意图。  

CAN总线

 1.1 闭环总线网络  CAN物理层的形式主要有两种,图中的CAN通讯网络是一种遵循ISO11898标准的高速、短距离“闭环网络”,它的总线最大长度为40m,通信速度最高为1Mbps,总线的两端各要求有一个“120 欧”的电阻。  

CAN总线

 1.2 开环总线网络  图中的是遵循ISO11519-2标准的低速、远距离“开环网络”,它的最大传输距离为1km,最高通讯速率为125kbps,两根总线是独立的、不形成闭环,要求每根总线上各串联有一个“2.2千欧”的电阻。  

CAN总线

 1.3 通讯节点  从CAN通讯网络图可了解到,CAN总线上可以挂载多个通讯节点,节点之间的信号经过总线传输,实现节点间通讯。   由于CAN通讯协议不对节点进行地址编码,而是对数据内容进行编码的,所以网络中的节点个数理论上不受限制,只要总线的负载足够即可,可以通过中继器增强负载。   CAN通讯节点由一个CAN控制器及CAN收发器组成,控制器与收发器之间通过CAN_Tx及CAN_Rx信号线相连,收发器与CAN总线之间使用CAN_High及CAN_Low信号线相连。   其中CAN_Tx及CAN_Rx使用普通的类似TTL逻辑信号,而CAN_High及CAN_Low是一对差分信号线,使用比较特别的差分信号,下一小节再详细说明。   当CAN节点需要发送数据时,控制器把要发送的二进制编码通过CAN_Tx线发送到收发器,然后由收发器把这个普通的逻辑电平信号转化成差分信号,通过差分线CAN_High和CAN_Low线输出到CAN总线网络。   而通过收发器接收总线上的数据到控制器时,则是相反的过程,收发器把总线上收到的CAN_High及CAN_Low信号转化成普通的逻辑电平信号,通过CAN_Rx输出到控制器中。   例如,STM32的CAN片上外设就是通讯节点中的控制器,为了构成完整的节点,还要给它外接一个收发器,在我们实验板中使用型号为TJA1050的芯片作为CAN收发器。   CAN控制器与CAN收发器的关系如同TTL串口与MAX3232电平转换芯片的关系,MAX3232芯片把TTL电平的串口信号转换成RS-232电平的串口信号,CAN收发器的作用则是把CAN控制器的TTL电平信号转换成差分信号 (或者相反) 。   目前有以下CAN电平转换芯片(不全)  

CAN总线

  我们来用TJA1050来看下原理图:  

CAN总线

 1.4 差分信号  差分信号又称差模信号,与传统使用单根信号线电压表示逻辑的方式有区别,使用差分信号传输时,需要两根信号线,这两个信号线的振幅相等,相位相反,通过两根信号线的电压差值来表示逻辑 0 和逻辑 1。   见下图,它使用了V+与V-信号的差值表达出了图下方的信号。  

CAN总线

  相对于单信号线传输的方式,使用差分信号传输具有如下优点:   (1)抗干扰能力强,当外界存在噪声干扰时,几乎会同时耦合到两条信号线上,而接收端只关心两个信号的差值,所以外界的共模噪声可以被完全抵消。   举一个例子,正常的单线假设逻辑1是3.3V,逻辑0假设是0V,但是如果有噪声,把3.3V弄成了0V(极端),把0V弄成了-3.3V,此时就逻辑错误,但是有Can高/Can低一般都作用于两根线,所以两个虽然都有噪声影响,但是差值还是不变的   (2)能有效抑制它对外部的电磁干扰,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。   举一个例子,假设一根是10V,一根是-10V,单跟都会对外部造成电磁干扰,但是CAN可以把线拧在一起,跟编麻花一样,可以互相抵消电子干扰   (3)时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。   由于差分信号线具有这些优点,所以在USB协议、485协议、以太网协议及CAN协议的物理层中,都使用了差分信号传输。  1.5 CAN协议中的差分信号  CAN协议中对它使用的CAN_High及CAN_Low表示的差分信号做了规定,见表及图。   以高速CAN协议为例,当表示逻辑1时 (隐性电平) ,CAN_High和CAN_Low 线上的电压均为2.5v,即它们的电压差 VH-VL=0V;而表示逻辑0时 (显性电平) ,CAN_High的电平为3.5V,CAN_Low线的电平为1.5V,即它们的电压差为 VH-VL=2V。   例如,当CAN收发器从CAN_Tx线接收到来自CAN控制器的低电平信号时 (逻辑0),它会使CAN_High输出3.5V,同时CAN_Low输出1.5V,从而输出显性电平表示逻辑0 。  

CAN总线

  在CAN总线中,必须使它处于隐性电平 (逻辑1) 或显性电平 (逻辑0) 中的其中一个状态。假如有两个CAN通讯节点,在同一时间,一个输出隐性电平,另一个输出显性电平,类似I2C总线的“线与”特性将使它处于显性电平状态,显性电平的名字就是这样来的,即可以认为显性具有优先的意味。  

CAN总线

  由于 CAN 总线协议的物理层只有1对差分线,在一个时刻只能表示一个信号,所以对通讯节点来说,CAN通讯是半双工的,收发数据需要分时进行。在CAN的通讯网络中,因为共用总线,在整个网络中同一时刻只能有一个通讯节点发送信号,其余的节点在该时刻都只能接收。  2 CAN协议层 2.1 CAN的波特率及位同步  由于CAN属于异步通讯,没有时钟信号线,连接在同一个总线网络中的各个节点会像串口异步通讯那样,节点间使用约定好的波特率进行通讯,特别地,CAN还会使用“位同步”的方式来抗干扰、吸收误差,实现对总线电平信号进行正确的采样,确保通讯正常。  2.2 位时序分解  为了实现位同步,CAN协议把每一个数据位的时序分解成如图 所示的SS段、PTS段、PBS1段、PBS2段,这四段的长度加起来即为一个CAN数据位的长度。分解后最小的时间单位是Tq,而一个完整的位由8~25个Tq组成。   为方便表示,图中的高低电平直接代表信号逻辑0或逻辑1(不是差分信号)。  

CAN总线

  该图中表示的CAN通讯信号每一个数据位的长度为19Tq,其中SS段占1Tq,PTS段占6Tq, PBS1段占5Tq, PBS2段占7Tq。   信号的采样点位于PBS1段与PBS2段之间,通过控制各段的长度,可以对采样点的位置进行偏移,以便准确地采样。   各段的作用如介绍下:  

SS段 (SYNC SEG)

SS译为同步段,若通讯节点检测到总线上信号的跳变沿被包含在SS段的范围之内,则表示节点与总线的时序是同步的,当节点与总线同步时,采样点采集到的总线电平即可被确定为该位的电平。SS段的大小固定为1Tq。  

PTS段 (PROP SEG)

PTS译为传播时间段,这个时间段是用于补偿网络的物理延时时间。是总线上输入比较器延时和输出驱动器延时总和的两倍。PTS段的大小可以为1~8Tq。  

PBS1段 (PHASE SEG1)

PBS1译为相位缓冲段,主要用来补偿边沿阶段的误差,它的时间长度在重新同步的时候可以加长。PBS1段的初始大小可以为1~8Tq。  

PBS2段 (PHASE SEG2)

PBS2这是另一个相位缓冲段,也是用来补偿边沿阶段误差的,它的时间长度在重新同步时可以缩短。PBS2段的初始大小可以为2~8Tq。  2.3 通讯的波特率  总线上的各个通讯节点只要约定好1个Tq的时间长度以及每一个数据位占据多少个Tq,就可以确定CAN通讯的波特率。   例如,假设上图中的1Tq=1us,而每个数据位由19个Tq组成,则传输一位数据需要时间T1bit=19us,从而每秒可以传输的数据位个数为:1x10次方/19 = 52631.6 (bps)   这个每秒可传输的数据位的个数即为通讯中的波特率。  2.4 同步过程分析  波特率只是约定了每个数据位的长度,数据同步还涉及到相位的细节,这个时候就需要用到数据位内的SS、PTS、PBS1及PBS2段了。根据对段的应用方式差异, CAN的数据同步分为硬同步和重新同步。其中硬同步只是当存在“帧起始信号”时起作用,无法确保后续一连串的位时序都是同步的,而重新同步方式可解决该问题,这两种方式具体介绍如下:  ① 硬同步  若某个CAN节点通过总线发送数据时,它会发送一个表示通讯起始的信号 (即下一小节介绍的帧起始信号),该信号是一个由高变低的下降沿。而挂载到CAN总线上的通讯节点在不发送数据时,会时刻检测总线上的信号。见图 ,可以看到当总线出现帧起始信号时,某节点检测到总线的帧起始信号不在节点内部时序的SS段范围,所以判断它自己的内部时序与总线不同步,因而这个状态的采样点采集得的数据是不正确的。所以节点以硬同步的方式调整,把自己的位时序中的SS段平移至总线出现下降沿的部分,获得同步,同步后采样点就可以采集得正确数据了。  

CAN总线

 ② 重新同步  前面的硬同步只是当存在帧起始信号时才起作用,如果在一帧很长的数据内,节点信号与总线信号相位有偏移时,这种同步方式就无能为力了。因而需要引入重新同步方式,它利用普通数据位的高至低电平的跳变沿来同步 (帧起始信号是特殊的跳变沿)。   重新同步与硬同步方式相似的地方是它们都使用SS段来进行检测,同步的目的都是使节点内的SS段把跳变沿包含起来。   重新同步的方式分为超前和滞后两种情况,以总线跳变沿与SS段的相对位置进行区分。   第一种相位超前的情况如图 ,节点从总线的边沿跳变中,检测到它内部的时序比总线的时序相对超前2Tq,这时控制器在下一个位时序中的PBS1段增加2Tq的时间长度,使得节点与总线时序重新同步。  

CAN总线

  第二种相位滞后的情况如图 ,节点从总线的边沿跳变中,检测到它的时序比总线的时序相对滞后2Tq,这时控制器在前一个位时序中的PBS2段减少2Tq的时间长度,获得同步。  

CAN总线

  在重新同步的时候,PBS1和PBS2中增加或减少的这段时间长度被定义为“重新同步补偿宽度SJW(reSynchronization Jump Width)”。   一般来说CAN控制器会限定SJW的最大值,如限定了最大SJW=3Tq时,单次同步调整的时候不能增加或减少超过3Tq的时间长度,若有需要,控制器会通过多次小幅度调整来实现同步。当控制器设置的SJW极限值较大时,可以吸收的误差加大,但通讯的速度会下降  2.5 CAN的报文种类及结构  在SPI通讯中,片选、时钟信号、数据输入及数据输出这4个信号都有单独的信号线,I2C协议包含有时钟信号及数据信号2条信号线,异步串口包含接收与发送2条信号线,这些协议包含的信号都比CAN协议要丰富,它们能轻易进行数据同步或区分数据传输方向。   而CAN使用的是两条差分信号线,只能表达一个信号,简洁的物理层决定了CAN必然要配上一套更复杂的协议,如何用一个信号通道实现同样、甚至更强大的功能呢?   CAN协议给出的解决方案是对数据、操作命令 (如读/写) 以及同步信号进行打包,打包后的这些内容称为报文。  2.5.1 报文的种类  在原始数据段的前面加上传输起始标签、片选 (识别) 标签和控制标签,在数据的尾段加上CRC校验标签、应答标签和传输结束标签,把这些内容按特定的格式打包好,就可以用一个通道表达各种信号了,各种各样的标签就如同SPI中各种通道上的信号,起到了协同传输的作用。当整个数据包被传输到其它设备时,只要这些设备按格式去解读,就能还原出原始数据,这样的报文就被称为CAN的“数据帧”。   为了更有效地控制通讯,CAN一共规定了 5 种类型的帧,它们的类型及用途说明如下表。  

CAN总线

 2.5.2 数据帧的结构  数据帧是在CAN通讯中最主要、最复杂的报文,我们来了解它的结构,见下图:  

CAN总线

  数据帧以一个显性位 (逻辑0) 开始, 7个连续的隐性位 (逻辑1) 结束,在它们之间,分别有仲裁段、控制段、数据段、CRC段和ACK段。  3 CAN控制内核  框图中标号处的CAN控制内核包含了各种控制寄存器及状态寄存器,我们主要讲解其中的主控制寄存器CAN_MCR及位时序寄存器CAN_BTR。  3.1 主控制寄存器CAN_MCR  主控制寄存器CAN_MCR负责管理CAN的工作模式,它使用以下寄存器位实现控制。  3.2 位时序寄存器 (CAN_BTR) 及波特率 

CAN总线

 

CAN总线

  代码清单CAN初始化结构  

CAN总线

  CAN发送及接收结构体  

CAN总线

  CAN筛选器结构体  

CAN总线

  审核编辑 :李倩

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分