电子说
数组是最基本的数据结构,关于数组的面试题也屡见不鲜,本文罗列了一些常见的面试题,仅供参考,如果您有更好的题目或者想法,欢迎留言讨论。目前有以下18道题目,如果有好的题目,随时更新。
数组求和
求数组的最大值和最小值
求数组的最大值和次大值
求数组中出现次数超过一半的元素
求数组中元素的最短距离
找出绝对值最小的元素
数组求和
给定一个含有n个元素的整型数组a,求a中所有元素的和。可能您会觉得很简单,是的,的确简单,但是为什么还要说呢,原因有二,第一,这道题要求用递归法,只用一行代码。第二,这是我人生中第一次面试时候遇到的题,意义特殊。
分析
简单说一下,两种情况
1. 如果数组元素个数为0,那么和为0。
2. 如果数组元素个数为n,那么先求出前n - 1个元素之和,再加上a[n - 1]即可
代码
// 数组求和int sum(int*a, int n){ return n == 0 ? 0 : sum(a, n -1) + a[n -1];}
求数组的最大值和最小值
给定一个含有n个元素的整型数组a,找出其中的最大值和最小值
分析
常规的做法是遍历一次,分别求出最大值和最小值,但我这里要说的是分治法(Divide and couquer),将数组分成左右两部分,先求出左半部份的最大值和最小值,再求出右半部份的最大值和最小值,然后综合起来求总体的最大值及最小值。这是个递归过程,对于划分后的左右两部分,同样重复这个过程,直到划分区间内只剩一个元素或者两个元素。
代码
// 求数组的最大值和最小值,返回值在maxValue和minValuevoid MaxandMin(int *a, int l, int r, int& maxValue, int& minValue){ if(l == r) // l与r之间只有一个元素 { maxValue = a[l] ; minValue = a[l] ; return ; } if(l + 1 == r) // l与r之间只有两个元素 { if(a[l] >= a[r]) { maxValue = a[l] ; minValue = a[r] ; } else { maxValue = a[r] ; minValue = a[l] ; } return ; } int m = (l + r) / 2 ; // 求中点 int lmax ; // 左半部份最大值 int lmin ; // 左半部份最小值 MaxandMin(a, l, m, lmax, lmin) ; // 递归计算左半部份 int rmax ; // 右半部份最大值 int rmin ; // 右半部份最小值 MaxandMin(a, m + 1, r, rmax, rmin) ; // 递归计算右半部份 maxValue = max(lmax, rmax) ; // 总的最大值 minValue = min(lmin, rmin) ; // 总的最小值}
求数组的最大值和次大值
给定一个含有n个元素的整型数组,求其最大值和次大值
分析
思想和上一题类似,同样是用分治法,先求出左边的最大值leftmax和次大值leftsecond,再求出右边的最大值rightmax和次大值rightsecond,然后合并,如何合并呢?分情况考虑
1 如果leftmax > rightmax,那么可以肯定leftmax是最大值,但次大值不一定是rightmax,但肯定不是rightsecond,只需将leftsecond与rightmax做一次比较即可。
2 如果rightmax > leftmax,那么可以肯定rightmax是最大值,但次大值不一定是leftmax,但肯定不是leftsecond,所以只需将leftmax与rightsecond做一次比较即可。
注意
这种方法无法处理最大元素有多个的情况,比如3,5,7,7将返回7,7而不是7,5。感谢网友从无到有靠谁人指出。
代码
// 找出数组的最大值和次大值,a是待查找的数组,left和right是查找区间,max和second存放结果void MaxandMin(int a[], int left, int right, int&max, int&second){ if(left == right) { max = a[left] ; second = INT_MIN; } elseif(left +1== right) { max = a[left] > a[right] ? a[left] : a[right] ; second = a[left] < a[right] ? a[left] : a[right] ; } else { int mid = left + (right - left) /2 ; int leftmax ; int leftsecond ; MaxandMin(a, left, mid, leftmax, leftsecond) ; int rightmax ; int rightsecond ; MaxandMin(a, mid +1, right, rightmax, rightsecond) ; if (leftmax > rightmax) { max = leftmax ; second = leftsecond > rightmax ? leftsecond : rightmax ; } else { max = rightmax ; second = leftmax < rightsecond ? rightsecond : leftmax ; } }}
求数组中出现次数超过一半的元素
给定一个n个整型元素的数组a,其中有一个元素出现次数超过n / 2,求这个元素。据说是百度的一道题
分析
设置一个当前值和当前值的计数器,初始化当前值为数组首元素,计数器值为1,然后从第二个元素开始遍历整个数组,对于每个被遍历到的值a[i]
1 如果a[i]==currentValue,则计数器值加1
2 如果a[i] != currentValue, 则计数器值减1,如果计数器值小于0,则更新当前值为a[i],并将计数器值重置为1
代码
// 找出数组中出现次数超过一半的元素int Find(int* a, int n){ int curValue = a[0] ; int count = 1 ; for (int i = 1; i < n; ++i) { if (a[i] == curValue) count++ ; else { count-- ; if (count < 0) { curValue = a[i] ; count = 1 ; } } } return curValue ;}
另一个方法是先对数组排序,然后取中间元素即可,因为如果某个元素的个数超过一半,那么数组排序后该元素必定占据数组的中间位置。
求数组中元素的最短距离
给定一个含有n个元素的整型数组,找出数组中的两个元素x和y使得abs(x - y)值最小
分析
先对数组排序,然后遍历一次即可
代码
int compare(const void* a, const void* b) { return *(int*)a - *(int*)b ; } // 求数组中元素的最短距离void MinimumDistance(int* a, int n) { // Sort qsort(a, n, sizeof(int), compare) ; int i ; // Index of number 1 int j ; // Index of number 2 int minDistance = numeric_limits::max() ; for (int k = 0; k < n - 1; ++k) { if (a[k + 1] - a[k] < minDistance) { minDistance = a[k + 1] - a[k] ; i = a[k] ; j = a[k + 1] ; } } cout << "Minimum distance is: " << minDistance << endl ; cout << "i = " << i << " j = " << j << endl ; }
找出绝对值最小的元素
给定一个有序整数序列(非递减序),可能包含负数,找出其中绝对值最小的元素,比如给定序列 -5, -3, -1, 2, 8 则返回1。
分析
由于给定序列是有序的,而这又是搜索问题,所以首先想到二分搜索法,只不过这个二分法比普通的二分法稍微麻烦点,可以分为下面几种情况
如果给定的序列中所有的数都是正数,那么数组的第一个元素即是结果。
如果给定的序列中所有的数都是负数,那么数组的最后一个元素即是结果。
如果给定的序列中既有正数又有负数,那么绝对值得最小值一定出现在正数和负数的连接处。
为什么?因为对于负数序列来说,右侧的数字比左侧的数字绝对值小,如上面的-5, -3, -1, 而对于整整数来说,左边的数字绝对值小,比如上面的2, 8,将这个思想用于二分搜索,可先判断中间元素和两侧元素的符号,然后根据符号决定搜索区间,逐步缩小搜索区间,直到只剩下两个元素。
代码
单独设置一个函数用来判断两个整数的符号是否相同
bool SameSign(int a, int b){ if (a * b > 0) return true; else return false;}
// 找出一个非递减序整数序列中绝对值最小的数int MinimumAbsoluteValue(int* a, int n){ // Only one number in array if (n ==1) { return a[0] ; } // All numbers in array have the same sign if (SameSign(a[0], a[n -1])) { return a[0] >=0? a[0] : a[n -1] ; } // Binary search int l =0 ; int r = n -1 ; while(l < r) { if (l + 1 == r) { return abs(a[l]) < abs(a[r]) ? a[l] : a[r] ; } int m = (l + r) /2 ; if (SameSign(a[m], a[r])) { r = m; continue; } else { l = m ; continue; } }}
全部0条评论
快来发表一下你的评论吧 !