Linux的5种IO模型

描述

 

哈喽,我是老吴,俺又来分享文章啦!

浑浑噩噩到了 30 岁,距离开滴滴还有 5 年的时间。

还有机会全身而退吗?

哈哈!

30 而立,今年会是值得拼搏的一年,干它!

以下是正文:

一、Linux 的 5 种 IO 模型
二、如何使用信号驱动式 I/O?
三、内核何时会发送 "IO 就绪" 信号?
四、最简单的示例
五、扩展知识

一、Linux 的 5 种 IO 模型

阻塞式 I/O:

系统调用可能因为无法立即完成而被操作系统挂起,直到等待的事件发生为止。

Linux

点击查看大图

非阻塞式 I/O (O_NONBLOCK):

系统调用则总是立即返回,而不管事件是否已经发生。

Linux

点击查看大图

I/O 复用 (select、poll、epoll):

通过 I/O 复用函数向内核注册一组事件,内核通过 I/O 复用函数把其中就绪的事件通知给应用程序。

Linux

点击查看大图

信号驱动式 I/O (SIGIO):

为一个目标文件描述符指定宿主进程,当文件描述符上有事件发生时,SIGIO 的信号处理函数将被触发,然后便可对目标文件描述符执行 I/O 操作。

Linux

点击查看大图

异步 I/O (POSIX 的 aio_ 系列函数):

异步 I/O 的读写操作总是立即返回,而不论 I/O 是否是阻塞的,真正的读写操作由内核接管。

Linux

点击查看大图

思考一下,什么时候应该选择何种 I/O 模型?为何要这么选择?

下面重点关注信号驱动式 I/O 这一模型,其他模型可查阅文末参考书籍。

二、如何使用信号驱动式 I/O?

一般通过如下 6 个步骤来使用信号驱动式 I/O 模型。

1> 为通知信号安装处理函数。

通过 sigaction() 来完成:

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

默认情况下,这个通知信号为 SIGIO。

2> 为文件描述符的设置属主。

通过 fcntl() 的 F_SETOWN 操作来完成:

fcntl(fd, F_SETOWN, pid)

属主是当文件描述符上可执行 I/O 时,会接收到通知信号的进程或进程组。

pid 为正整数时,代表了进程 ID 号。

pid 为负整数时,它的绝对值就代表了进程组 ID 号。

3> 使能非阻塞 I/O。

通过 fcntl() 的 F_SETFL 操作来完成:

flags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, flags | O_NONBLOCK);

4> 使能信号驱动 I/O。

通过 fcntl() 的 F_SETFL 操作来完成:

flags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, flags | O_ASYNC);

5> 进程等待 "IO 就绪" 信号的到来。

当 I/O 操作就绪时,内核会给进程发送一个信号,然后调用在第 1 步中安装好的信号处理函数。

6> 进程尽可能多地执行 I/O 操作。

循环执行 I/O 系统调用直到失败为止,此时错误码为 EAGAIN 或 EWOULDBLOCK。

原因:

信号驱动 I/O 提供的是边缘触发通知,即只有当 I/O 事件发生时我们才会收到通知,

且当文件描述符收到 I/O 事件通知时,并不知道要处理多少 I/O 数据。

三、内核何时会发送 "IO 就绪" 信号?

对于不同类型的文件描述符,情况不一样。

1> 终端

  • 对于终端,当有新的输入时会会产生信号。

2> 管道和 FIFO

对于读端,下列情况会产生信号:

  • 数据写入到管道中;
  • 管道的写端关闭;

对于写端,下列情况会产生信号:

  • 对管道的读操作增加了管道中的空余空间大小。
  • 管道的读端关闭;

3> 套接字

对于 UDP 套接字,下列情况会产生信号:

  • 数据报到达套接字;
  • 套接字上发生异步错误;

对于 TCP 套接字,信号驱动式 I/O 近乎无用。

  • 太多情况都会产生信号,而我们又无法得知事件类型,因此这里就不再列举其产生信号的情况。

四、最简单的示例

信号处理函数:

static volatile sig_atomic_t gotSigio = 0;

static void handler(int sig)
{
    gotSigio = 1;
}

主程序:

int main(int argc, char *argv[])
{
    int flags, j, cnt;
    struct termios origTermios;
    char ch;
    struct sigaction sa;
    int done;

    /* Establish handler */
    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = handler;
    if (sigaction(SIGIO, &sa, NULL) == -1) {
        perror("sigaction()
");
        exit(1);
    }

    /* Set owner process */
    if (fcntl(STDIN_FILENO, F_SETOWN, getpid()) == -1) {
        perror("fcntl() / F_SETOWN
");
        exit(1);
    }

    /* Enable "I/O possible" signaling and make I/O nonblocking */
    flags = fcntl(STDIN_FILENO, F_GETFL);
    if (fcntl(STDIN_FILENO, F_SETFL, flags | O_ASYNC | O_NONBLOCK) == -1) {
        perror("fcntl() / F_SETFL
");
        exit(1);
    }

    for (done = 0, cnt = 0; !done ; cnt++) {
        sleep(1);

        if (gotSigio) {
            gotSigio = 0;

            /* Read all available input until error (probably EAGAIN)
               or EOF */
            while (read(STDIN_FILENO, &ch, 1) > 0 && !done) {
                printf("cnt=%d; read %c
", cnt, ch);
                done = ch == '#';
            }
        }
    }
    exit(0);
}

运行效果:

./build/sigio 
a
cnt=0; read a
cnt=0; read 

abc
cnt=4; read a
cnt=4; read b
cnt=4; read c
cnt=4; read 

#
cnt=7; read #

该程序会先使能信号驱动 IO,然后循环执行计数操作。

当有 IO 就绪信号到来时,会去终端读取数据并打印出来,然后继续执行计数操作。

五、扩展知识

I/O 多路复用 、信号驱动 I/O 以及 epoll 机制可用于监视多个文件描述符。

它们并不实际执行 I/O 操作,当某个文件描述符处于就绪态,仍需采用传统的 I/O 系统调用来完成 I/O 操作。

相比 I/O 多路复用,当监视大量的文件描述符时信号驱动 I/O 有着显著的性能优势,原因是内核能够帮进程记录了正在监视的文件描述符列表。

信号驱动 I/O 的缺点:

  • 信号的处理流程较为复杂;

  • 无法指定需要监控的事件类型。

Linux 特有的 epoll 是一个更好的选择。

六、相关参考

UNIX 网络编程卷1

  • 6.2 I/O模型
  • 25 信号驱动式I/O

Linux-UNIX 系统编程手册

  • 63 其他备选的I/O模型

Linux 高性能服务器编程

  • 8.3 I/O 模型

Linux 多线程服务端编程_使用muduo C++网络库

  • 7.4.1 muduo的IO模型

审核编辑 :李倩


 


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分