中海达声呐探测设备保证海底全覆盖测量

电子说

1.2w人已加入

描述

风力发电是当今发展最快的绿色能源之一。数据显示,我国海上风电装机规模已高居世界第一,“向海争风”正成为东部沿海地区绿色低碳发展的“蓝色动力”。随着海上风电的建设规模持续快速发展,海底电缆冲刷状况的监测已成为海上风电运维过程的关键。

随着声学探测技术的进步,侧扫声呐、多波束测深系统、浅地层剖面仪等声呐探测设备的测量精度和成熟度有了很大的提高,完全可以满足海底电缆冲刷状况监测的要求,成为评估其冲刷状况的技术手段。

项目背景

应客户需求,于7月中旬对东海某海域海上风电装机的升压站周边基础地形和海底电缆路由进行扫测,因此项目投入侧扫声呐系统、多波束测深系统和浅地层剖面仪等多种测量设备进行协同作业,对浅埋海底电缆进行搜寻、探测,并评估其冲刷状况。

其中,侧扫声呐系统负责局部地貌调查,主要对海底电缆路由两侧100m范围的地形地貌覆盖扫测,借助声呐图像反应风机与升压站之间,升压站至陆上登陆点之间海底电缆路由的掩埋、裸露、悬空情况,以分析海底电缆的位置、掩埋或悬空变化以及演变情况;多波束测深系统负责全覆盖地貌调查,主要对风机机位周边500m范围实现全覆盖海底地形扫测,以分析海底冲刷变化情况及冲刷沟的演变情况,同时可根据水下高精度三维点云数据计算冲刷区域方量等;浅地层剖面仪负责剖面测量,通过换能器将控制信号转换为不同频率(100Hz~10kHz)的声波脉冲向海底发射,以输出能够反映地层声学特征的浅地层声学记录剖面。

痛点分析

海底电缆铺设在海床面以下,海床本身受海流影响冲淤变化复杂,海底沟槽的产生演变较快,海底电缆周围在潮流作用下发生差异性冲刷,容易造成海底电缆出现非掩埋(裸露及悬空)状态。因此,海底电缆的监测需要考虑掩埋状态和非掩埋状态,针对不同状态要求采用不同的探测设备进行综合应用,这对设备之间的协同性提出了挑战。同时,由于电缆的直径很小,对探测设备的精度和稳定性也提出了很高的要求。

实施方案

针对项目的需求,中海达提供了iSide 5000多波束侧扫声呐系统+iBeam 8140浅水多波束测深系统+SES2000参量阵浅地层剖面仪+iPos MS11高精度惯性组合导航系统解决方案。

 

 

 

 

iSide 5000多波束侧扫声呐系统、iBeam 8140浅水多波束测深系统、iPos MS11高精度惯性组合导航系统、SES2000参量阵浅地层剖面仪

其中,iSide 5000多波束侧扫声呐系统采用了先进的动态聚焦技术,在大量程处也能对目标高分辨力成像,有效实现高速高分辨力全覆盖扫测效率;iBeam 8140浅水多波束测深系统具有较高的水深分辨率和测深精度,符合IHO S44特级标准和《水运工程测量规范》要求;iPos MS11高精度惯性组合导航系统通过耦合光纤陀螺技术和GNSS定位技术,有效解决了GNSS失锁、卫星数不够等极端状况下的定位导航,全自由度输出定位、定向、姿态、同步等所有导航定位信息,是完成多波束测量的最佳搭档。

作业流程

1.侧扫声呐地貌调查采用iSide 5000多波束侧扫声呐系统进行局部地貌数据采集。作业前,测量人员调试好仪器,以保证信号清晰准确,并校对仪器中各测量参数的正确性。作业开始后,拥有100KHz和400KHz双频率的iSide 5000多波束侧扫声呐系统进行双频率采集。为了保证声呐图像的灰度一致,TVG等声呐参数设置保存不变,且船只航速保持在5节左右。此次采集,iSide 5000多波束侧扫声呐系统实际测线偏移没有超过设计间隔的20%,符合设计要求,保证了海底全覆盖测量。

2.多波束全覆盖地貌调查采用iBeam 8140浅水多波束测深系统进行全覆盖地面调查。作业前,测量人员检查了测量船的水舱和油舱的平衡情况,以保持船舶的前后以及左右舷吃水一致。作业中,测量人员指挥驾驶员按照测前布设的测线操船行进,且航速保持稳定,最大航速不得高于5节。每条测线结束后,作业船维持原航向、航速几分钟后再转向。在转向后,待姿态传感器保持稳定后再开始重新上线测量。在测量过程中,iBeam 8140浅水多波束测深系统扫测的带宽和其水深对应的颜色直观地显示在屏幕上,使测量人员可以准确地观察到测线的重叠情况和测区有无漏测情况。

3.浅地层剖面仪剖面测量采用SES2000参量阵浅地层剖面仪进行剖面测量,作业中尽量保持TVG不变,船速不超过4节,以保证回波清晰。

 

成果展示

此次协同作业所得测量数据包括:地貌数据、多波束水深数据。通过对所得数据进行综合处理和分析,确定海底冲刷沟的位置、规模、深度及冲刷沟内底质类型,给出了冲刷分析调查结果和综合调查报告。

侧扫声呐数据分析

通过对声呐图像的观察可以看出,iSide 5000多波束侧扫声呐系统可以轻松地探测到海缆在裸露状态下的平面位置、分布状态以及电缆的数目、入泥点与出泥点的位置等信息。同时能够探测到海缆周围可能存在的不利影响因素,如不良地貌、海底障碍物、人工作业痕迹等,便于评估海缆的安全运营状态。

多波束数据分析

基于多波束测量形成海底全覆盖的海量数据,通过将不同时间段测量的数据成果求差,直接获得地形冲淤变化量值,绘制出了风机桩和升压站冲淤变化数字地形图,并绘制了等值线,为分析水下地形变化以及后期的冲刷区域填埋提供基础数据。

通过风机桩周围数据分析得出:风机距中心位置半径13m范围内,桩周存在较为严重冲刷现象,海底高程范围为-18.14m至-12.82m,平均高程为-13.04m,风机基础周边最大冲刷坑深度约5.38m;风机桩周围存在轻微的冲刷坑,距桩基中心13m范围内填方量为1151.8m³。

 

 

 

iBeam 8140浅水多波束测深系统获取的风机桩周围等深线图、三维地形图及点云图

数据计算

数据计算

穿过桩中心西东、南北向剖面线

通过升压站周围数据分析得出:升压站周围30米范围内,四根桩位周围有轻微冲刷现象,海底高程范围为-14.8~12.5m,平均高程为-13.37m,升压站四个桩位冲刷坑深度一号为2.2米、二号2米、三号1.9米、四号0.8米。四个桩位周冲刷坑以平均高程为基准面,填方量如下表格所示。

数据计算

▲四个桩位填方量情况

数据计算

数据计算

数据计算

数据计算

西东向北侧、西东向南侧、南北向西侧、南北侧东侧四个桩位剖面线

 

 

 

 

浅地层剖面仪数据分析

将采集的浅剖数据按每条测线各自处理,浅地层剖面仪可以获得海底电缆路由上的不连续节点,其连线能够反映出海底电缆路由的平面位置,同时还能够测出海底电缆的埋深,为后期海底电缆运维提供数据支持。

▲浅剖成果图

数据计算

数据计算

▲浅剖测线数据表

项目总结

此次项目成功获取到海底电缆和桩基的高清声呐图像、高密度的水下三维点云数据等,通过iBeam 8140浅水多波束测深系统、iSide 5000多波束侧扫声呐系统、iPos MS11高精度惯性组合导航系统等自主研发装备的创新组合,外加参量阵浅地层剖面仪保证了海缆各状态监测的高效率和高精度。该方法具有更好的普适性、经济性和可靠性,能够获取更加详实、精确的电缆分布情况和海底地形数据。通过该方法对海底电缆路由区域进行定期调查,分析冲淤变化情况,预测海底电缆裸露、悬空状况的发生,以便于运维单位采取及时、有效的防范措施,消除安全隐患,为海上风电运维提供了可靠的国产利器。  

      审核编辑:彭静
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分