群勃龙(TBE)是一种具有黄体酮特性的合成代谢类固醇,广泛用于畜牧业。但是,过量使用TBE所产生的代谢排放会通过径流和渗透污染天然水,从而影响人们的生产生活。
电化学发光(ECL)传感器具有检测范围宽、分析速度快、信号稳定、重现性高等特点,广泛应用于环境检测、食品安全分析和生物临床诊断等领域。强的ECL信号是传感领域中保持痕量目标检测高灵敏度的前提。然而,传统的信号放大策略离不开对高浓度发光体和共反应剂的依赖,从而限制了信号放大效果。目前,一种新型的三元ECL体系被开发用于发光信号放大,即通过引入共反应促进剂来催化共反应剂自由基的生成以高效的促进ECL发射。因此,开发高效的共反应促进剂并探讨内在的信号放大机制具有重要意义。
微流控作为一种交叉学科技术,近年来引起了广泛的研究兴趣。基于微流控开发的芯片具有便携、操作简单、样品消耗少等优点。目前,微流控芯片在即时诊断和体外器官模拟方面发展迅速。
基于此,济南大学魏琴教授结合三电极体系和微流控技术,开发了一款新型ECL传感器,该传感器方便易携、检测精度高,可实现TBE含量的快速实时检测。相关成果以“A Portable Microfluidic-Based Electrochemiluminescence Sensor for TraceDetection of Trenbolone in Natural Water”为题发表在国际化学权威杂志
Analytical Chemistry上。文章第一作者为博士研究生宋先震,通讯作者为李玉阳博士和魏琴教授。
图1 传感器的构建流程示意图
所开发的基于微流控芯片的ECL传感器对TBE的检测具有高的灵敏度,线性范围为10fg/mL至100ng/mL,检测限低至3.32fg/mL,这对于及时快速分析环境污染物,尤其是激素和类固醇环境污染物具有重要意义。
图2 (A
)开发的传感器在一系列不同浓度的TBE标准样品下的ECL响应(a-h:10fg/mL-100ng/mL);(B
)对应的校准曲线;(C
)传感器的特异性;(D
)稳定性和 (E
)再现性。
具体来看,研究人员首先开发了一种用于信号放大的三元ECL体系。选择发光性能稳定的PTCA作为ECL发射体。其次,选择Cu₂MoS₄作为共反应促进剂以催化S₂O₈²⁻生成更多的SO₄
.⁻,从而放大ECL响应。具体来说,Cu₂MoS₄中混合价态过渡金属离子(Cu⁺/Cu²⁺和Mo⁴⁺/Mo⁶⁺)的可逆转化极大地促进了SO₄
.⁻的生成。同时,其独特的中空多孔结构具有大的比表面积,这进一步提高了催化性能,因此得到了强的ECL信号,从而提高了传感器的检测灵敏度。具体的信号放大和发光机制如图3所示。
图3(A
)(a
)裸电极,(b
)PTCA,(c
)PTCA/Cu₂MoS₄在含50mM的S₂O₈²⁻的PBS中的ECL响应,(
d)PTCA 和(e
)PTCA/
Cu₂MoS₄在纯PBS中的ECL响应;(B-C
)PTCA和PTCA/
Cu₂MoS₄在含50mM的
S₂O₈²⁻的PBS中的ECL光谱和CV响应;(D
)发光机理示意图。
此外,为了提高传感器的实用性,研究人员自主设计了一种便携式微流控芯片,并在其中集成了三电极检测体系。微流控芯片的制备是通过丝网印刷和湿法刻蚀得到微电极基板,并通过软刻蚀技术最终构建。设计的传感器芯片实现了检测过程的自动化和便携化,适用于天然水中环境污染物的痕量检测。芯片的具体制备过程如图4所示。
图4 微流控芯片的构建流程示意图
综上所述,研究人员开发了一种用于TBE痕量检测的便携式传感器芯片。具体而言,设计了以PTCA为发光体、S₂O₈²⁻为共反应剂、
Cu₂MoS₄为共反应促进剂的三元ECL体系,实现了高效的信号放大。首先,具有发光特性的PTCA在S₂O₈²⁻中表现出稳定的ECL发射。其次,
Cu₂MoS₄固有的混合价金属离子对和中空多孔结构提供了良好的催化能力,可作用于S₂O₈²⁻生成更多的SO₄
.⁻,从而获得强的ECL信号,为微量靶标分析提供了保障。此外,研究人员设计了一种便携式微流控芯片,通过集成三电极体系将其应用于ECL检测。开发的传感器芯片具有良好的灵敏度和稳定性,以及优异的检测准确度和精密度,可实现天然水中环境污染物的痕量灵敏检测。
论文链接:
https://pubs.acs.org/doi/10.1021/acs.analchem.2c02780
审核编辑 :李倩