电子说
【研究背景】
锂阳极的使用对于固态锂金属电池(SSLMBs)的能量密度超过锂离子电池至关重要。然而,由于固态界面的界面电阻大,物理接触差,以及锂阳极的枝晶问题和体积变化,实际应用受到了阻碍。
【工作简介】
近日,重庆大学徐朝和教授、王荣华副教授、Yang Zuguang等人制造了一种具有连续电子/离子导电网络的复合锂阳极,它显示了对石榴石型Li6.4La3Zr1.4Ta0.6O12电解质润湿性的明显改善。复合锂阳极的亲密界面及其高电荷转移动力学赋予对称电池在0.3cm−2 、超低界面电阻(∼2.0Ωcm2)、高临界电流密度(1.1mA cm−2)和在25℃下出色的循环性能(在0.1mA cm−2)的小过电位(45mV)。
SSLMB与LiFePO4 搭配,在0.1C时提供161.7 mAh g−1 的高放电比容量,100次循环的良好循环性能,容量保持率为80%。此外,基于NMC811的SSLMB也可以实现219.5 mAh g−1 的高容量,卓越的速率能力和循环稳定性。这项工作为开发具有高性能的复合锂阳极用于SSLMB的实际应用奠定了基础。
【具体内容】
在这项工作中,与工程亲锂人造层不同,通过在石榴石型Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO)SSE的表面进行原位转换和合金化反应,以市售的Li箔、AlF3 和AlN为原料,探索了具有连续电子/离子导电网络的高性能复合锂阳极。由Li、Li-Al合金、LiF和/或Li3N组成的电子/离子导电网络在Li阳极和SSE之间具有良好的界面兼容性,具有良好的亲锂性,高离子传导性 ,和Li+扩散系数 以及良好的结构稳定性,从而使复合锂阳极对LLZTO SSE具有紧密的界面接触、高电荷转移动力学和低界面电阻,以及有利的Li+流量调节和枝晶锂限制能力。
受益于这些独特的性能,最终在对称锂离子电池和全SSLMBs中都实现了极大的电化学性能改善。这些结果证实,开发具有高性能的复合锂电阳极对SSLMBs的实际进展极为重要。
用固相烧结法合成了LLZTO球团。在25°C时,离子导电率为4.18 × 10-4 S cm-1。复合锂电阳极是通过原位转换和合金化反应合成的。将AlN和AlF3粉末按照固定的摩尔比被引入到不锈钢容器中的熔融锂中,在300℃下搅拌得到(LNF)。
根据XRD结果,可以确认在与熔融锂反应后,AlF3和AlN将在原位分别转化为LiF和Li3N,同时还有Li-Al合金。通过X射线光电子能谱(XPS)研究了LNF的表面化学成分。在F 1s和N 1s的XPS光谱中,也检测到属于LiF(684.8 eV)和Li3N(398.1 eV)的特征峰。
图1.LNF的合成过程示意图以及Li/LZTO和LNF/LZTO的界面接触比较。
在金属锂阳极和固体电解质之间设计一个亲密的界面接触,对于具有优良性能的SSLMB来说是必不可少的。为了说明界面特性,通过捕捉熔融阳极液滴在LLZTO表面的接触状态,检查了原始Li、LNF、LN和LF对LLZTO SSE的浸润性。一个几乎完美的球形液滴被观察到在 Figure 2a,表明原始锂对LLZTO的润湿性很差。
与此形成鲜明对比的是,如图2b所示,LNF、LF和LN液滴均匀地分布在LLZTO表面,表明固体界面的润湿性得到了极大的改善,可以实现紧密的界面接触。图2c-2d显示了LNF/LLZTO、LF/LLZTO和LN/LLZTO界面的横截面SEM图像
如这些图像所示,在界面区域没有观察到空隙和间隙,进一步验证了固态界面的亲密接触。EDS图被进一步应用于检查复合锂阳极和LLZTO SSE的元素分布(图2e-2i)。显然,F和/或N、Li和Al在LNF、LF、LN阳极和LLZTO之间的界面上均匀分布,表明具有稳定界面的复合锂阳极被成功构建。
为了发现界面润湿性增强的根源,进行了DFT计算,分析了各种成分(Li、Li3N、LiF和Li-Al合金)与LLZTO的界面化学。如图2j-2m所示,Li、Li3N、LiF和Li-Al合金与LLZTO的界面形成能分别为0.816、0.369、0.206和0.693 J/m2。这一结果表明,与纯锂相比,Li3N和LiF与LLZTO的界面形成能都较低。它从理论上说明,AlN和AlF3与熔融的Li反应产生Li3N和LiF有利于改善Li和LLZTO之间的化学接触。
图2.(a) 原始Li和(b) LNF对石榴石型陶瓷LLZTO的界面润湿性。(c) LNF/LLZTO界面的横截面SEM图像。(d-i)LNF/LLZTO的SEM和相应的元素映射图像。(j-m) Li、Li3N、LiF、Li2Al和LLZTO的原子结构,以及它们的界面能量。
图3. (a, b) LNF电极的横截面FIB-SEM图像。(c-f) LNF电极的横截面EDS绘图图像。(g-l) Li、F、Al和N的横截面FIB-SEM图像和元素线扫描。
图4. (a-d) 对称电池的EIS图,分别使用(a) 原始Li, (b) LNF, (c) LN和(d) LF作为阳极和LLZTO作为SSE。(e-g) CCD评估期间对称电池的电压-时间曲线。(h-j) 对称电池的速率能力。
图5. (a-c) 在电流密度为0.1和0.3 mA cm-2时,分别以LN(a, d)、LNF(b, e)和LF(c, f)为阳极的对称电池的长期性能;(g)对称电池在0.5 mA cm-2时的比较循环曲线。(h) 本工作的循环性能与文献的比较。
图6. (a, b) 带有LFP阴极的全电池在0.1 C和不同充电率下的充放电曲线。(c) 带有LNF阳极和LFP阴极的全电池的速率性能。(d) 带有LFP阴极的全电池在0.5℃下工作了100个循环。(e-g) 采用LNF阳极和NMC811阴极的全电池的充放电曲线和速率性能。(h) 带有NMC811阴极的全电池在0.2C下循环100次。
【总结】
通过在LLZTO SSEs表面的原位转化和合金化反应,开发了一种带有电子/离子导电网络的高性能复合锂阳极。形成的锂铝合金与LiF和/或Li3N网络相结合,表现出优异的亲锂性和高电子/离子导电性,这使得优化的LNF阳极与LLZTO SSE具有亲密的界面接触、高电荷转移动力学和低电阻、Li+流量调节和枝晶锂限制能力,最终在对称锂离子电池和全SLLMBs中实现改进的电化学性能。
LNF/LZTO/LNF对称电池在0.3cm−2 ,超低的ASR(∼2.0Ωcm2),高CCD(1.1mA cm−2),以及在25℃下极其出色的循环性能(在0.1mA cm−2),显示出小的过电位(45mV)。此外,通过使用LNF阳极,基于LFP的SSLMB在0.1C时可提供161.7 mAh g−1 的高放电比容量,以及100次的良好循环性能,容量保持率为80%。
基于NMC811的高压SSLMB也能在0.1C下实现219.5 mAh g−1 的高容量,在25℃下具有良好的速率能力和循环稳定性。这些结果证实,开发具有高性能的复合锂电阳极是SSLMB实际进展的一个极其重要的解决方案。
审核编辑:刘清
全部0条评论
快来发表一下你的评论吧 !