关于钠离子电池负极材料,你知道多少

电池技术

127人已加入

描述

负极材料在充电时发生还原反应,放电时发生氧化反应,一般具有较低的还原电势。理想的正极材料应满足还原电势低(但必须高于金属钠的沉积电势)、可逆容量大、循环性能稳定、电子和离子电导率高、结构稳定且不怕空气、安全性高、价格低廉。对于钠离子电池而言,负极材料起着负载和释放钠离子的重要作用,其直接影响电池整体的动力学性能,例如倍率性能、功率密度等。目前,钠离子电池的负极材料主要分为五种类型:碳基材料、钛基材料、合金材料、有机化合物类、其他体系,其中碳基材料的技术成熟度最高,资源丰富,有望率先实现产业化。  

钠离子电池

(1)碳基材料:软碳硬碳各有千秋,石墨负极尚在研究   根据碳原子的微观结构,碳基负极材料分为石墨类材料、无定形碳材料、纳米碳材料。与其他碱金属离子不同,钠离子在碳酸酯类溶剂中难以对石墨层间进行有效嵌脱,这主要是钠离子-石墨嵌入反应的ΔG>0所致。因此,在锂离子电池中广泛应用的石墨负极,在碳酸酯作溶剂的钠离子电池中难以使用。其实在醚类溶剂中,石墨也能有效嵌脱钠离子,但是电解液的稳定性削弱,易与正极发生反应,有待进一步研究。无定形碳材料具有较高的储钠比容量,也是目前最接近产业化的负极材料。   按照热处理石墨化难易程度,分为软碳和硬碳。软碳在2800℃以上能完全石墨化,硬碳在高温下也难以石墨化。软、硬碳差别在于微观结构中碳层的交联相互作用,根本取决于所用碳化前驱体的结构和形状。一般来说,热塑性前驱体(石化原料及副产品)容易形成软碳,热固性前驱体(生物质、树脂聚合物等)容易形成硬碳。相对而言,软碳的制造成本较低,工艺易于控制,但比容量不及硬碳;硬碳的比容量较高,但首周效率往往较低,且其性能依赖于所用前驱体和和处理工艺,产碳率较低。值得一提的是,目前人们对硬碳材料的储钠机理仍未彻底弄清,还有较大的提升空间。纳米碳材料主要有石墨烯、碳纳米管,钠离子主要以吸附的方式储存在其表面和缺陷处,这类材料的理论比容量较大,但首周库仑效率低,反应电势高,而且价格昂贵。  

钠离子电池

(2)钛基材料:潜在优势独特,短期难以商用   四价钛的还原电势普遍较低,其化合物空气稳定,且不同晶体结构的钛化合物储钠电势不同,因此被用来开发负极材料。目前,钛基材料主要是一些钛的氧化物和聚阴离子化合物。氧化物包括层状的Na2Ti3O7、Na0.6[Cr0.6Ti0.4]O2以及尖晶石型的Li4Ti5O12(也被用于锂离子电池负极)等,聚阴离子化合物包括正交型的NaTiOPO4、NASICON型的NaTi2(PO4)3。这些材料的比容量普遍不高,但具有很多独特的优势,例如Li4Ti5O12是一种无应变材料,Na0.6[Cr0.6Ti0.4]O2可以同时充当正负极材料,NaTi2(PO4)3可以用于水系钠离子电池。  

钠离子电池

(3)合金材料:理论比容量巨大,技术难题待克服   金属钠能与Sn、Sb、In等多种金属形成合金,可作为钠离子电池的负极,与锂离子电池的硅基负极类似。这类材料的优势是理论比容量很高,且反应电势很低,因此有望制造高能量密度、高电压的钠离子电池。但是这类材料的反应动力学性能较差,而且钠脱嵌前后的体积变化可达数倍,伴随巨大的应力,使活性材料容易从集流体表面脱落,比容量快速衰减。  

钠离子电池

(4)有机化合物类:合成条件温和,尚处研究阶段   有机负极材料的优缺点与有机正极材料类似,目前种类主要包括:羰基化合物、Schiff碱化合物、有机自由基化合物和有机硫化物等,尚处于实验室研究阶段。    

(5)其他体系:多为过渡金属的Ⅴ、Ⅵ族化合物,尚处研究阶段   某些过渡金属氧化物、硫化物、硒化物、氮化物、磷化物也具有可逆储钠的电化学活性,这类材料往往同时伴随转换反应和合金化反应,因此其理论比容量可超过相应的合金类负极材料,但也更多的技术难题。  

编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分