ROHM开发出数十毫瓦超低功耗的设备端学习 AI芯片, 无需云服务器、在设备端即可实时预测故障

通信网络

650人已加入

描述

*设备端(On-device)学习: 在同一AI芯片上进行学习和训练

全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款设备端学习*AI芯片(配备设备端学习AI加速器的SoC),该产品利用 AI(人工智能)技术,能以超低功耗实时预测内置电机和传感器等的电子设备的故障(故障迹象检测),非常适用于IoT领域的边缘计算设备和端点*1。

Rohm
      
通常,AI芯片要实现其功能,需要进行设置判断标准的“训练”,以及通过学到的信息来判断如何处理的“推理”。在这种情况下,“训练”需要汇集庞大的数据量形成数据库并随时更新,因此进行训练的AI芯片需要具备很高的运算能力,而其功耗也会随之增加。正因如此,面向云计算设备开发的高性能、昂贵的AI芯片层出不穷,而适用于边缘计算设备和端点(更有效地构建物联网社会的关键)的低功耗、可在设备端学习的AI芯片开发却困难重重。
此次开发出的AI芯片,是ROHM在基于日本庆应义塾大学松谷教授开发的“设备端学习算法”,面向商业化开发的AI加速器*2(AI专用硬件计算电路)和ROHM8位高效CPU“tinyMicon MatisseCORE™(以下简称“Matisse”)”构成。通过将2万门超小型AI加速器与高效CPU相结合,能以仅几十mW(仅为以往AI训练芯片的1/1000)的超低功耗实现训练和推理。利用本产品,无需连接云服务器,就可以在设备终端将未知的输入数据和模式形成“不同于以往”的数值并输出,因此可在众多应用中实现实时故障预测。

未来,ROHM计划将该AI芯片的AI加速器应用在IC产品中,以实现电机和传感器的故障预测。计划于2023年度推出产品,于2024年度投入量产。
 
日本庆应义塾大学 理工学部信息工学科 松谷 宏纪 教授表示:“随着5G通信和数字孪生*3等物联网技术的发展,对云计算的要求也越来越高,而在云服务器上处理所有数据,从负载、成本和功耗方面看并不现实。我们研究的‘设备端学习’和开发的‘设备端学习算法’,是为了提高边缘端的数据处理效率,创建更好的物联网社会。这次,我校通过与ROHM公司进行联合研究,进一步改进了设备端学习电路技术,并有望以高性价比的方式推出产品。我们预计在不久的将来,这种原型AI芯片将会成功嵌入ROHM的IC产品中,为实现更高效的物联网社会做出贡献。”

Rohm
Rohm

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分