RF电路设计的常见问题

RF/无线

1773人已加入

描述

射频系统在生产生活的出现的频率越来越高,在物流行业,RFID射频识别技术有着很多应用,此技术同样应用在了二代身份证上。在未来的5G探索中,5G射频模块也将推动着移动通信技术的发展。在实际RF电路设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折中处理。

当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波等,在全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。

  

一、RF电路设计的常见问题

1、数字电路模块和模拟电路模块之间的干扰

如果模拟电路(射频)和数字电路单独工作,可能各自工作良好。但是,一旦将二者放在同一块电路板上,使用同一个电源一起工作,整个系统很可能就不稳定。

这主要是因为数字信号频繁地在地和正电源(>3 V)之间摆动,而且周期特别短,常常是纳秒级的。由于较大的振幅和较短的切换时间。使得这些数字信号包含大量且独立于切换频率的高频成分。在模拟部分,从无线调谐回路传到无线设备接收部分的信号一般小于lμV。

因此数字信号与射频信号之间的差别会达到120 dB。显然,如果不能使数字信号与射频信号很好地分离。微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。

2、供电电源的噪声干扰

射频电路对于电源噪声相当敏感,尤其是对毛刺电压和其他高频谐波。微控制器会在每个内部时钟周期内短时间突然吸人大部分电流,这是由于现代微控制器都采用CMOS工艺制造。

因此,假设一个微控制器以lMHz的内部时钟频率运行,它将以此频率从电源提取电流。

如果不采取合适的电源去耦,必将引起电源线上的电压毛刺。如果这些电压毛刺到达电路RF部分的电源引脚,严重时可能导致工作失效。

3、不合理的地线

如果RF电路的地线处理不当,可能产生一些奇怪的现象。对于数字电路设计,即使没有地线层,大多数数字电路功能也表现良好。而在RF频段,即使一根很短的地线也会如电感器一样作用。

粗略地计算,每毫米长度的电感量约为l nH,433 MHz时10 toni PCB线路的感抗约27Ω。如果不采用地线层,大多数地线将会较长,电路将无法具有设计的特性。

4、天线对其他模拟电路部分的辐射干扰

在PCB电路设计中,板上通常还有其他模拟电路。

例如,许多电路上都有模,数转换(ADC)或数/模转换器(DAC)。射频发送器的天线发出的高频信号可能会到达ADC的模拟淙攵恕R蛭 魏蔚缏废呗范伎赡苋缣煜咭谎⒊龌蚪邮誖F信号。如果ADC输入端的处理不合理,RF信号可能在ADC输入的ESD二极管内自激。从而引起ADC偏差。

射频系统

二、五大经验总结

1、射频电路布局原则

在设计RF布局时,必须优先满足以下几个总原则:

(1)尽可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来,简单地说,就是让高功率RF发射电路远离低功率RF接收电路;

(2)确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜箔面积越大越好;

(3)电路和电源去耦同样也极为重要;

(4)RF输出通常需要远离RF输入;

(5)敏感的模拟信号应该尽可能远离高速数字信号和RF信;

 

2、物理分区、电气分区设计分区

可以分解为物理分区和电气分区。物理分区主要涉及元器件布局、朝向和屏蔽等问题;电气分区可以继续分解为电源分配、RF走线、敏感电路和信号以及接地等的分区。

3、在手机PCB板设计时,应注意几个方面

(1)、电源、地线的处理:

a、众所周知的是在电源、地线之间加上去耦电容。

b、尽量加宽电源、地线宽度,最好是地线比电源线宽。 

c、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。

(2)、数字电路与模拟电路的共地处理

所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。

(3)、信号线布在电(地)层上

在电(地)层上进行布线,首先应考虑用电源层,其次才是地层,因为最好是保留地层的完整性。

(4)、大面积导体中连接腿的处理

在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,这样可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。

(5)、布线中网络系统的作用

在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。

标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。

4、高频PCB设计技巧和方法

(1)传输线拐角要采用45°角,以降低回损。

(2)要采用绝缘常数值按层次严格受控的高性能绝缘电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效管理。

(3)要完善有关高精度蚀刻的PCB设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并指定布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。

(4)突出引线存在抽头电感,要避免使用有引线的组件。高频环境下,最好使用表面安装组件。

(5)对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺,因为该工艺会导致过孔处产生引线电感。

(6)要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3维电磁场对电路板的影响。

(7)要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。

(8)阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和绝缘性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电磁能量的较大变化。一般采用焊坝(solder dam)来作阻焊层的电磁场。

 

5、电磁兼容性设计

电磁兼容性是指电子设备在各种电磁环境中仍能够协调、有效地进行工作的能力。

电磁兼容性设计的目的是使电子设备既能抑制各种外来的干扰,使电子设备在特定的电磁环境中能够正常工作,同时又能减少电子设备本身对其它电子设备的电磁干扰。

电磁兼容性设计的时候需要考虑一下几个方面:选择合理的导线宽度、采用正确的布线策略、为了抑制印制板导线之间的串扰,在设计布线时应尽量避免长距离的平等走线、避免高频信号通过印制导线时产生的电磁辐射、抑制反射干扰、电路板设计过程中采用差分信号线布线策略。  

      审核编辑:彭静
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分