开发能满足低温工况的电池具有重要意义。目前广泛使用的锂离子电池低温性能不佳,同时低温析锂现象还带来了显著的安全隐患。因此,开发能够胜任低温储能的电池体系迫在眉睫。
近日,清华大学张强教授团队系统地研究了水系锌空电池的低温性能。有趣的是,0 ℃以下的低温环境中(低至−40 ℃),水系锌空电池非但不会因为电解液凝固而失效,反而呈现出在低温储能方面的本征优势。
实验上,锌空电池具有良好的低温性能。不仅在−10 ℃下具有与室温下可比的电化学性能。同时,其低温工作的极限可低至−40 ℃。理论上,锌空电池的低温性能优势是物理化学规律作用的必然结果。具体地,溶液的依数性保证了高浓电解液的低凝固点;正极与负极反应的活化能分别极大和极小,都对应于反应动力学对温度的不敏感性(根据Arrhenius公式);水系电解液中氢氧根离子的跳跃机制保障必要的离子电导率。
图1. 锌空电池的低温性能 为进一步提升锌空电池的低温性能,研究者随后从四个方面,排除或指认了限制其低温性能的短板:1)相图绘制结果表明电解液在该条件下未凝固;2)正极动力学受温度影响不显著;3)负极动力学几乎不受温度影响;4)低温下电解液电导率显著降低,其带来的欧姆极化,是限制低温性能的主要瓶颈。
图2. 限制锌空电池低温性能的因素解耦。(a, b) 正极动力学;(c, d) 负极动力学;(e, f) 电解液电导率。 为提升低温下电解液电导率,研究者调控电解液溶剂化结构,研究了具有不同碱金属阳离子的水系碱性电解液的性质。实验测试与理论模拟表明,碱金属的原子序数越大,低温下电解液离子缔合现象越不显著,离子电导率越高。因此,将目前基于氢氧化钾的电解液,更换为基于氢氧化铯的电解液,有望赋予锌空电池更佳的低温性能。
图3. 电解液的溶剂化调控:更换不同碱金属阳离子。 基于氢氧化铯的电解液赋予锌空电池显著提升的低温性能。具体地,在−10 ℃,锌空电池实现了稳定的500圈的5 mA cm−2长循环,电池极化仅0.8 V。以此电池装配的充电宝具有在低温下工作的能力,成功在冬季北京室外为手机充电,并在吉林冰封的松花湖湖面点亮LED灯泡。
图4 基于氢氧化铯电解液的锌空电池的低温性能及实用化场景展示。 该工作首次揭示了锌空电池在低温储能领域的巨大优势,并为满足低温等苛刻工况电池的开发提供了新的思路。
审核编辑 :李倩
全部0条评论
快来发表一下你的评论吧 !