STM32CUBEMX(2)--USART通过DMA方式接收不定长数据

描述

概述

直接存储器访问(DMA)用于在外设与存储器之间以及存储器与存储器之间提供高速数据传输。可以在无需任何CPU操作的情况下通过DMA快速传输传输。这样节省的CPU资源可供其它操作使用。

DMA允许在后台执行数据传输,无需Cortex-MO处理器干预。在此操作过程中,主处理器可以执行其它任务,仅当整个数据块需要处理时,才会中断主处理器。这样即使传输大量数据也不会对系统性能造成太大影响。

DMA主要用于为不同的外设模块实现集中数据缓冲存储(通常在系统SRAM中)。与分布式解决方案(其中每个外设都需要实现自己的本地数据存储)相比,DMA解决方案在硅片成本和功耗方面的成本较低。

根据使用的产品型号的不同,有一个或两个DMA模块。

STM32F0XX DMA控制器总共有5个通道用于DMA1,每个通道都专门管理来自一个或多个外设的存储器访问请求。它具有一个仲裁器,用于处理不同的DMA请求的优先级。

本篇文章主要介绍如何使用STM32CubeMX实现串口DMA读取,并且打印出去。

stm32cubemx

在这里插入图片描述

硬件准备

首先需要准备一个开发板,这里我准备的是NUCLEO-F030R8的开发板:stm32cubemx

在这里插入图片描述

选择芯片型号

使用STM32CUBEMX选择芯片stm32f030r8,如下所示:

stm32cubemx

在这里插入图片描述

配置时钟源

HSE与LSE分别为外部高速时钟和低速时钟,在本文中使用内置的时钟源,故都选择Disable选项,如下所示:

stm32cubemx

在这里插入图片描述

配置时钟树

STM32F0的最高主频到48M,所以配置48即可:

stm32cubemx

在这里插入图片描述

串口配置

本次实验使用的串口1进行串口通信,波特率配置为115200。

stm32cubemx

配置DMA

stm32cubemx

中断

stm32cubemx

在这里插入图片描述

生成工程设置

stm32cubemx

在这里插入图片描述

代码生成设置

最后设置生成独立的初始化文件:

stm32cubemx

在这里插入图片描述

生成代码

stm32cubemx

在这里插入图片描述

配置keil

stm32cubemx

在这里插入图片描述

代码

在main.c中,添加头文件,若不添加会出现 identifier "FILE" is undefined报错。

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

变量定义:

/* USER CODE BEGIN PV */
#define BUFFERSIZE 255           //可以接收的最大字符个数       
uint8_t ReceiveBuff[BUFFERSIZE]; //接收缓冲区
uint8_t recv_end_flag = 0,Rx_len;//接收完成中断标志,接收到字符长度
/* USER CODE END PV */

函数声明和串口重定向:

/* USER CODE BEGIN PFP */
void uart1_data(void);                    //接收函数
#ifdef __GNUC__                                    //串口重定向
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif 
PUTCHAR_PROTOTYPE
{
    HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);
    return ch;
}
/* USER CODE END PFP */

开启串口IDLE中断:

/* USER CODE BEGIN 2 */
    printf("串口1DMA例程
");
  __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//使能串口1 IDLE中断 
  /* USER CODE END 2 */

主循环:

/* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
        uart1_data();//串口数据处理
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

串口DMA获取:

/* USER CODE BEGIN 4 */
void uart1_data(void)
{
    if(recv_end_flag ==1)//接收完成标志
    {
        printf("数据长度=%d
",Rx_len);//打印接收到的数据长度 
        printf("数据内容:");
        for(int i=0;iprintf("%c",ReceiveBuff[i]);//向串口打印接收到的数据
            }
    printf("
");          
    for(int i = 0; i < Rx_len ; i++) //清空接收缓存区
    ReceiveBuff[i]=0;//置0
    Rx_len=0;//接收数据长度清零
    recv_end_flag=0;//接收标志位清零
    }
    //开启下一次接收
    HAL_UART_Receive_DMA(&huart1,(uint8_t*)ReceiveBuff,BUFFERSIZE);
}
/* USER CODE END 4 */

#include "stm32f0xx_it.c"文件中断外部变量引用:

/* USER CODE BEGIN 0 */
#define BUFFERSIZE 255    //可接收的最大数据量
extern uint8_t recv_end_flag,Rx_len,bootfirst;
/* USER CODE END 0 */

串口1中断函数:

/**
  * @brief This function handles USART1 global interrupt.
  */
void USART1_IRQHandler(void)
{
  /* USER CODE BEGIN USART1_IRQn 0 */

  /* USER CODE END USART1_IRQn 0 */
  HAL_UART_IRQHandler(&huart1);
  /* USER CODE BEGIN USART1_IRQn 1 */
    uint32_t temp;
    if(USART1 == huart1.Instance)//判断是否为串口1中断

    {      
        if(RESET != __HAL_UART_GET_FLAG(&huart1,UART_FLAG_IDLE))//如果为串口1
        {
            __HAL_UART_CLEAR_IDLEFLAG(&huart1);//清除中断标志
      HAL_UART_DMAStop(&huart1);//停止DMA接收
             temp  = __HAL_DMA_GET_COUNTER(&hdma_usart1_rx);//获取DMA当前还有多少未填充
              Rx_len =  BUFFERSIZE - temp; //计算串口接收到的数据个数
              recv_end_flag = 1;
         }
        }    
  /* USER CODE END USART1_IRQn 1 */
}

演示效果

stm32cubemx

在这里插入图片描述

  审核编辑:汤梓红

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
评论(0)
发评论
记帖MCU 2022-11-17
0 回复 举报
交流ⓆU_N:6_15061293&nbsp;&nbsp; 收起回复

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分