LPUART(Low power universal asynchronous receiver transmitter,低功耗通用异步收发器),相比标准的UART,其功耗极低,支持在低功耗模式下运行,并且可以将MCU从低功耗模式唤醒。
本文介绍MM32全新低功耗系列MM32L0130的LPUART外设,实现基本UART收发通信、通过UART中断使MCU从低功耗模式中唤醒。
1LPUART 简介
1.1 LPUART功能框图
1.2 LPUART功能特征
支持UART帧格式的全双工异步数据收发。
支持输入任意频率的时钟源,可配置为LSE/LSI/PCLK。
支持可编程的波特率数据传输,发送和接收时可采用3、4分频交替,防止累计误差。
可配置奇偶校验位、停止位。
可配置收发数据信号取反。
2LPUART时钟配置
LPUART时钟源配置寄存器在RCC_CFGR2中的位0和位1,可配置LSE、LSI、PCLK作为时钟源。
3LPUART中断与唤醒
支持的中断源:
接收缓冲溢出
帧错误
奇偶校验错误
接收器检测到起始位
接收器检测到下降沿
接收器完整接收 1byte 数据
接收器完整接收数据且与预设数据匹配
发送器数据完成发送
发送器缓冲空
支持低功耗模式下的唤醒源:
接收器检测到下降沿唤醒
接收器检测到起始位唤醒
接收器1字节接收完成唤醒
接收器1字节数据接收并匹配唤醒
4接收和发送时序
由于LPUART工作时钟不是波特率的整数倍,采用固定分频系数的话会引入累计误差,所以在接收和发送的时候采用3、4分频交替进行接收和发送,每个bit采样一次,每个bit采用3分频还是4分频由MCTL寄存器控制,接收和发送时序图如下:
当LPUART工作时钟配置为标准的32.768KHz时,软件可配置BREN为0,然后根据通信波特率调整调制寄存器MCTL,建议配置参数如下表:
5LPUART寄存器概览
6LPUART实现普通UART功能配置步骤
1开启LPUART所选时钟源
2配置RCC_CFGR2寄存器选择LPUART时钟
3配置 LPUBAUD 寄存器决定波特率
4根据波特率选择合适的调制参数,配置 MCTL 寄存器
5配置 LPUCON 寄存器,选择帧格式、极性、中断参数等
6配置 LPUEN 寄存器打开发送、接收使能
7发送和接收数据
发送数据:
将待发送的数据写入LPUTXD,当发送完成时,LPUSTA的TXE标志位会被硬件置起,表示数据已传入移位寄存器,发送 buffer为空。此时可往LPUTXD写入下一个数据。软件向发送buffer写数据时TXE标志位自动清零。
接收数据:
当接收一个完整帧时,LPUSTA的RXF标志位置起,表示已完整接收数据,此时软件可读取LPURXD读出接收到的数据。软件读LPUDATA寄存器时,RXF标志位自动清零。
8LPUART功能实现代码
首先编写基础UART的代码,通过轮询的方式发送和接收数据。然后添加中断代码,实现通过LPUART将MCU从低功耗模式唤醒。
8.1 基于LSE时钟的基础UART功能实现代码
a.开启BKP、LSE时钟,待LSE时钟稳定,使能LPUART时钟:
RCC_APB1PeriphClockCmd(RCC_APB1ENR_BKP, ENABLE); PWR_BackupAccessCmd(ENABLE); RCC_LSEConfig(RCC_LSE_ON); DELAY_Ms(100); while(RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) {;} RCC_APB2PeriphClockCmd(RCC_APB2ENR_LPUART1, ENABLE);
b.配置LPUART的LPUART_InitTypeDef结构体参数:
LPUART_InitTypeDef init_struct; init_struct.LPUART_Clock_Source = 0; //时钟源选择 init_struct.LPUART_BaudRate = LPUART_Baudrate_9600; //波特率选择9600 init_struct.LPUART_WordLength = LPUART_WordLength_8b; //8位数据位 init_struct.LPUART_StopBits = LPUART_StopBits_1; //1位停止位 init_struct.LPUART_Parity = LPUART_Parity_No; //没有校验位 init_struct.LPUART_MDU_Value = 0x952; //波特率调制控制寄存器 init_struct.LPUART_NEDET_Source = LPUART_NegativeDectect_Source2;//下降沿采样使能 init_struct.LPUART_RecvEventCfg = LPUART_RecvEvent_Start_Bit;//中断检测模式 LPUART_Init(LPUART1, &init_struct); LPUART_Cmd(LPUART1, ENABLE);
c.设置LPUART引脚复用,例程复用到PA4、PA5:
GPIO_InitTypeDef GPIO_InitStruct; RCC_GPIO_ClockCmd(GPIOA, ENABLE); GPIO_PinAFConfig(GPIOA, GPIO_PinSource4, GPIO_AF_3); GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_3); //LPUART1_TX GPIOA.4 GPIO_StructInit(&GPIO_InitStruct); GPIO_InitStruct.GPIO_Pin = GPIO_Pin_4; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStruct); //LPUART1_RX GPIOA.5 GPIO_InitStruct.GPIO_Pin = GPIO_Pin_5; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOA, &GPIO_InitStruct);
d.编写发送函数:
void Output_Byte(LPUART_TypeDef* lpuart, uint8_t dat) { LPUART_SendData(lpuart, dat); while(!LPUART_GetFlagStatus(lpuart, LPUART_LPUSTA_TXE)); }
e.编写轮询接收函数:
uint8_t Input_Byte(LPUART_TypeDef* lpuart) { uint8_t temp; while(1) { if(LPUART_GetFlagStatus(lpuart, LPUART_LPUSTA_RXF)) { //read LPUART_LPUSTA_RXF bit and clear temp = (uint8_t)LPUART_ReceiveData(lpuart); break; } } if(temp == 0xd) { return 0; } return temp; }
f.编写实验样例:
void LPUART_TxRx_Test(void) { uint8_t temp, i; char string[] = "LPUART polling test! "; for(i = 0; i < strlen(string); i++) { Output_Byte(LPUART1, string[i]); } while(1) { temp = Input_Byte(LPUART1); if(temp != 0) { Output_Byte(LPUART1, temp); } } }
g.在main函数中配置好LPUART后,调用LPUART_TxRx_Test函数,可得到如下实验结果:
8.2 在上述基本LPUART配置的基础上增加中断配置代码,实现唤醒低功耗模式中的MCU
a.开启SYSCFG、PWR时钟:
RCC_APB2PeriphClockCmd(RCC_APB2ENR_SYSCFG, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1ENR_PWR, ENABLE);
b.EXTI模块可以产生中断请求,用来唤醒低功耗模式中的MCU,LPUART连接到EXTI22,使能EXTI22:
EXTI_InitTypeDef EXTI_InitStruct; EXTI_StructInit(&EXTI_InitStruct); EXTI_InitStruct.EXTI_Line = EXTI_Line22; EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_InitStruct.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStruct);
c.配置NVIC:
NVIC_InitTypeDef NVIC_InitStruct; NVIC_InitStruct.NVIC_IRQChannel = LPUART1_IRQn; NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE; NVIC_InitStruct.NVIC_IRQChannelPriority = 1; NVIC_Init( &NVIC_InitStruct);
d.清除接收标志并打开接收中断:
LPUART_ClearITPendingBit(LPUART1, LPUART_LPUIF_RXIF); LPUART_ITConfig(LPUART1, LPUART_LPUCON_RXIE, ENABLE);
e.定义RX缓存,然后编写中断服务函数:
char rxDataBuf[10], cnt = 0; uint8_t cnt_flag = 0; void LPUART1_IRQHandler() { if(LPUART_GetFlagStatus(LPUART1, LPUART_LPUSTA_START)) { LPUART_ClearFlagStatus(LPUART1, LPUART_LPUSTA_START); } if(LPUART_GetITStatus(LPUART1, LPUART_LPUIF_RXIF) == SET) { LPUART_ClearITPendingBit(LPUART1, LPUART_LPUIF_RXIF); rxDataBuf[cnt] = LPUART_ReceiveData(LPUART1); if(++cnt >= 10) { cnt_flag = 1; cnt = 0; } } }
f.编写实验样例:
void LPUART_Wakeup_Test(void) { uint8_t temp, i; char string1[] = "LPUART wakeup mcu test! "; char string2[] = "mcu stop! "; char string3[] = "mcu wakeup! "; for(i = 0; i < strlen(string1); i++) { Output_Byte(LPUART1, string1[i]); } DELAY_Ms(20); for(i = 0; i < strlen(string2); i++) { Output_Byte(LPUART1, string2[i]); } PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);//休眠 for(i = 0; i < strlen(string3); i++) { Output_Byte(LPUART1, string3[i]); } while(1) { } }
g.在main函数中配置好LPUART后,调用实验函数LPUART_Wakeup_Test,可以的到如下结果:
审核编辑:汤梓红
全部0条评论
快来发表一下你的评论吧 !