什么是相位编码雷达?

描述

在介绍LPI(低截获概率)雷达之前,需要先解释一下“互相关”的概念。“互相关”用来衡量信号间的相似性,我们以雷达信号为例,来说明“互相关”的计算方法。

相位编码

假设一个雷达向外发射了一个周期为20ns(PW=20ns)的正弦波信号,该信号只有一个周期,并等待其反射回波。图1的上图描述了这个发射信号。在实际应用中,一个雷达向外发射一个脉冲信号,该信号中的正弦波包含多个周期,此时正弦波的周期更短。

假若在发出信号100ns后,雷达开始收到反射回波,如中图所示。假设雷达每600ns(PRI=600ns)发射一个脉冲,上图和中图分别描述了在600ns的时间窗口内的发射信号和接收信号。

雷达无疑知道发射信号,因此通过计算发射信号与接收信号之间的互相关,从而判断接收信号是否真的是反射回波。

“互相关”

计算互相关的步骤如下,首先将发射信号与接收信号逐点相乘,然后将乘积相加,得到一个互相关的点;然后将接收信号移动一个样本(在这个例子中,我们假设每纳秒测量一个数据点),重复乘法-求和的过程,得到下一个互相关点。

以图为例,在此过程中发射信号保持不动,接收信号向右或向左移动(根据图中箭头指示右边为正方向,左边为负方向)。当上图的第一个点与中图的最后一个点重叠时,计算得到第一个互相关点。当上图和中图不再重叠时,此过程就结束了。通过以上计算,我们就得到了发射信号与接收信号的互相关,如下图所示,中心位置处的互相关性为零,在-100ns处有最大值,这意味着,在延迟100ns后,接收信号与发射信号相似。如果雷达是固定不动的,我们可以假定发射信号经过50ns到达目标。雷达波的传播速度为299,792,458m/s,目标大约在15m之外。

当然,在这个示例中,目标距离雷达特别近,这并不现实。对于移动的雷达或者移动的目标,雷达与目标间的相对速度可通过多普勒频移来估计,在确定目标的距离时需要考虑相对速度。如果在雷达的探测范围内存在一个目标,在自相关图中,会出现一个幅度明显高于探测门限的峰值。

通过上文阐述的互相关的例子,我们了解到互相关的大小是由发射信号与反射回波乘积的和决定的,当发射信号与反射回波完全重合时,将产生明显的峰值。

因此,为了降低发射信号的功率使得侦察接收机不能感知到雷达的存在。可以使用低功率大脉宽的雷达信号。由于信号的总能量保持不变,雷达仍然可以利用互相关性来探测目标。虽然如此,该方法仍存在一个问题。如果雷达信号的脉宽过长,那么两个目标的反射回波就有可能重叠,从而无法区分。

因此,如果我们希望发射一个低功率、大脉宽的信号,就需要专门的雷达波形。这个技术被称作脉冲压缩技术,使用这类波形的雷达被称作脉冲压缩雷达。

相位编码雷达

最简单的相位编码雷达只使用了两种雷达波形,它们是具有相同频率和幅度,但是相位相差180°的两个正弦信号。将其中一个信号用1表示,另一个用0表示。这种信号被称为二进制相移键控(BPSK)信号。

一个BPSK信号从0到1的变化速率,或者从1到0,被称作码片速率。相位编码雷达不是发射很长的正弦信号,而是发射相位可能变化的、级联的、短的正弦信号。例如,一部雷达利用刚刚提到的两个正弦信号,可以发射序列为[1,1,1,1,1,-1,-1,1,1,-1,1,-11]的BPSK信号。

这个序列是一个13位的Barker码。当两个信号不一致时,Barker码能够最大程度地减小信号自相关(即:一个信号与其自身的互相关)的振幅。为了验证此效果,我们将单周期的雷达信号替换为13位Barker码信号(PW=260ns)。大脉宽雷达信号的振幅减小了,所以大脉宽信号与小脉宽信号具有相同的能量,如图所示。

相位编码

从图中可以看出以下几点。首先,尽管大脉宽信号的振幅很小,但是Barker码信号与其反射回波的互相关的振幅峰值出现在同一位置处。因此,尽管该雷达发射的是低功率信号,却能以与脉冲雷达差不多的灵敏度进行目标定位。

再者,该雷达甚至在信号发射完毕之前就能接收到反射回波。因此,不同于之前讨论的脉冲雷达,LPI雷达需要使用收发分离的天线,一个用于发射信号,一个用于接收信号。

由于接收天线与发射天线毗邻安装(以便接收天线能够收到反射回波),因此该雷达的发射功率不能太高,同时天线的旁瓣增益必须远小于主瓣增益。否则,接收天线将受到发射信号的干扰。正因如此,LPI雷达的探测范围不是很远。

第三,在此例中,尽管发射信号的脉宽远大于脉冲雷达信号的脉宽(260ns vs. 20ns),LPI雷达信号的互相关图中出现了与图1中一样的尖峰。这意味着,尽管这是一个大脉宽的雷达信号,但是该信号仍然可以达到很好的分辨率来分离目标。

相位编码

为了测试相位编码雷达是否能像使用短脉冲信号的雷达一样分离两个目标,再次进行了仿真分析。在此次仿真分析中,需要探测两个目标。对于脉冲雷达,在信号发射开始后的第100ns收到第一个目标的反射回波,第150ns收到第二个信号的反射回波,仿真结果如图3所示。

由于脉冲雷达发射的是脉宽为20ns的信号,因此接收机清楚地看到两个回波,在发射信号与接收信号的互相关图中,也能清楚地看到两个尖峰。对于相位编码雷达,其发射信号的脉宽是260ns,两个目标的反射回波有重叠,如图4所示。

相位编码

然而,在互相相关图中相同位置处也能清楚地观察到两个尖峰。这两个简单的仿真示例说明了使用大脉宽、低功率的信号的相位编码雷达,能够达到与短脉冲雷达一样的距离分辨率和灵敏度。

相位编码雷达给电子战系统带来了巨大的挑战。期望通过探测到一个突增的接收信号来截获雷达信号的方法已经行不通了。一般而言,如果接收机知道发射雷达的信号,它可以利用相同的互相关原理来探测信号,积累后的信号能量比雷达接收到的信号能量大。然而,这种情况不太可能出现。

相位编码雷达的类型不止一种,本文只讨论用两种波形编码的BPSK雷达信号。还有其它使用两种以上波形的相位编码雷达信号。

例如,正交相移键控(QPSK)信号使用了四种具有(0°,90°,180°,270°)相移的波形。BPSK信号仍有缺陷,其容易受到多普勒频移的影响,多普勒频移改变了回波信号的相位。

审核编辑:汤梓红

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分