触控感测
近日,记者从中国科学技术大学获悉,该校微电子学院龙世兵教授团队与复旦大学芯片与系统先进技术研究院刘琦教授团队合作,利用深紫外(DUV)光电突触结合忆阻器的构架实现了基于储备池计算(RC)的指纹识别系统,相关成果在线发表于《自然·通讯》。
深紫外光电探测器在深空探索、环境监测、生物信息识别等领域的角色举足轻重,然而高速智能化探测在DUV波段存在严重缺失。以传统的指纹识别系统为例,其中传感器、存储器和处理器的分离恶化了决策的延迟,并不可避免地增加了整体计算能耗。随着智能时代的来临,这类光信息应该以什么样的形式进行处理?在生物体中,光信息的采集通过视觉神经系统来完成,而光信息的处理通过中枢神经系统进行。受此启发,科研团队提出通过感算和存算器件分别模拟神经突触的行为,来实现感存算一体化的光信息采集与处理。
研究团队基于富镓氧化镓材料设计,利用非晶材料的显著持续光电导效应,制备了具备短时程效应的光突触器件。通过4比特的紫外光脉冲输入测试,构建了感算器件RC网络的映射关系,这可以将图片信息通过紫外光转化为特征电流值。
最终,通过存算忆阻器阵列稳定的多态调控特性实现了对储备池输出的训练,实现了小规模的深紫外指纹识别功能。基于该硬件系统,采用定制化特征值策略,DUV指纹图像的高识别精度几乎与软件仿真结果相匹配。该系统在短期训练后即可达到100%的识别准确率,并且即使在15%背景噪声水平下也能保持90%的准确率,这与DUV波段的抗噪特性相符。这种全硬件感算RC系统为高效的识别和安全应用提供了很好的参考原型,也对深紫外波段的智能光电器件发展具有重要参考意义。
该成果得到了审稿人的充分肯定:“这个原型系统将为感内储备池计算系统的发展提供更多思路,整个工作的主题非常有趣。”
编辑:黄飞
全部0条评论
快来发表一下你的评论吧 !