1. Linux内核RTC驱动简介
RTC 设备驱动是一个标准的字符设备驱动,应用程序通过open、release、read、write和ioctl等函数完成对 RTC 设备的操作内核将 RTC 设备抽象为 rtc_device 结构体,RTC设备驱动就是申请并初始化rtc_device,最后将 rtc_device 注册到Linux内核里面,此结构体定义在include/linux/rtc.h文件中
struct rtc_device
{
struct device dev; /* 设备 */
struct module *owner;
int id; /* ID */
char name[RTC_DEVICE_NAME_SIZE]; /* 名字 */
const struct rtc_class_ops *ops; /* RTC 设备底层操作函数 */
struct mutex ops_lock;
struct cdev char_dev; /* 字符设备 */
unsigned long flags;
......
......
};
结构体中的ops成员变量是RTC设备的底层操作函数集合,是一个 rtc_class_ops 类型的指针变量,需要用户根据所使用的RTC设备编写的,此结构体定义在include/linux/rtc.h 文件中,内容如下
struct rtc_class_ops {
int (*open)(struct device *);
void (*release)(struct device *);
int (*ioctl)(struct device *, unsigned int, unsigned long);
int (*read_time)(struct device *, struct rtc_time *);
int (*set_time)(struct device *, struct rtc_time *);
int (*read_alarm)(struct device *, struct rtc_wkalrm *);
int (*set_alarm)(struct device *, struct rtc_wkalrm *);
int (*proc)(struct device *, struct seq_file *);
int (*set_mmss64)(struct device *, time64_t secs);
int (*set_mmss)(struct device *, unsigned long secs);
int (*read_callback)(struct device *, int data);
int (*alarm_irq_enable)(struct device *, unsigned int enabled);
};
rtc_class_ops 是最底层的 RTC 设备操作函数,并不是提供给应用层的。内核提供了一个 RTC 通用字符设备驱动文件,文件名为 drivers/rtc/rtc-dev.c, 理论提供了所有 RTC 设备共用的 file_operations 函数操作集,如下所示:
static const struct file_operations rtc_dev_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = rtc_dev_read,
.poll = rtc_dev_poll,
.unlocked_ioctl = rtc_dev_ioctl,
.open = rtc_dev_open,
.release = rtc_dev_release,
.fasync = rtc_dev_fasync,
};
应用程序可以通过 ioctl 函数来设置/读取时间、设置/读取闹钟的操作,那么对应的 rtc_dev_ioctl 函数就会执行,rtc_dev_ioctl 最终会通过操作 rtc_class_ops 中的 read_time、 set_time 等函数来对具体 RTC 设备的读写操作。内核中 RTC 驱动调用流程图如下示
2. Linux内核RTC驱动分析
一般情况下,半导体厂商都会编写好内部RTC驱动,无需我们自已动手编写。但是有必要了解一下是如何编写的打开imx6ull.dtsi,然后找到 snvs_rtc 节点内容,如下所示:
snvs_rtc: snvs-rtc-lp {
compatible = "fsl,sec-v4.0-mon-rtc-lp";
regmap = <&snvs>;
offset = <0x34>;
interrupts = 19 IRQ_TYPE_LEVEL_HIGH>,
20 IRQ_TYPE_LEVEL_HIGH>;
};
根据compatible属性值,在Linux源码中搜索"fsl,sec-v4.0-mon-rtc-lp"符串,即可找到对应的驱动文件drivers//rtc/rtc-snvs.c
static const struct of_device_id snvs_dt_ids[] = {
{ .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, snvs_dt_ids);
static struct platform_driver snvs_rtc_driver = {
.driver = {
.name = "snvs_rtc",
.pm = SNVS_RTC_PM_OPS,
.of_match_table = snvs_dt_ids,
},
.probe = snvs_rtc_probe,
};
module_platform_driver(snvs_rtc_driver);
可见这是一个标准的platform驱动,当驱动和设备匹配以后snvs_rtc_probe函数就会执行
static int snvs_rtc_probe(struct platform_device *pdev){
struct snvs_rtc_data *data;
struct resource *res;
int ret;
void __iomem *mmio;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap");
if (IS_ERR(data->regmap)) {
dev_warn(&pdev->dev, "snvs rtc: you use old dts file,please update it
");
//从设备树中获取RTC外设寄存器基地址
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
//内存映射,获得RTC外设寄存器物理基地址对应的虚拟地址
mmio = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mmio))
return PTR_ERR(mmio);
//采用regmap机制来读写RTC底层硬件寄存器
data->regmap = devm_regmap_init_mmio(&pdev->dev, mmio, &snvs_rtc_config);
} else {
data->offset = SNVS_LPREGISTER_OFFSET;
of_property_read_u32(pdev->dev.of_node, "offset", &data->offset);
}
if (!data->regmap) {
dev_err(&pdev->dev, "Can't find snvs syscon
");
return -ENODEV;
}
//从设备树中获取 RTC 的中断号
data->irq = platform_get_irq(pdev, 0);
if (data->irq < 0)
return data->irq;
......
platform_set_drvdata(pdev, data);
//用regmap机制的regmap_write函数完成对寄存器进行写操作
regmap_write(data->regmap, data->offset + SNVS_LPPGDR, SNVS_LPPGDR_INIT);
//清除LPSR寄存器
regmap_write(data->regmap, data->offset + SNVS_LPSR, 0xffffffff);
//使能RTC
snvs_rtc_enable(data, true);
device_init_wakeup(&pdev->dev, true);
//请求RTC中断
ret = devm_request_irq(&pdev->dev, data->irq,
snvs_rtc_irq_handler,
IRQF_SHARED, "rtc alarm", &pdev->dev);
if (ret) {
dev_err(&pdev->dev, "failed to request irq %d: %d
", data->irq, ret);
goto error_rtc_device_register;
}
//向系统注册rtc_devcie
data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &snvs_rtc_ops, THIS_MODULE);
if (IS_ERR(data->rtc)) {
ret = PTR_ERR(data->rtc);
dev_err(&pdev->dev, "failed to register rtc: %d
", ret);
goto error_rtc_device_register;
}
return 0;
error_rtc_device_register:
if (data->clk)
clk_disable_unprepare(data->clk);
return ret;
}
RTC 底层驱动snvs_rtc_ops操作集包含了读取/设置RTC时间,读取/设置闹钟等函数。其内容如下
static const struct rtc_class_ops snvs_rtc_ops = {
.read_time = snvs_rtc_read_time,
.set_time = snvs_rtc_set_time,
.read_alarm = snvs_rtc_read_alarm,
.set_alarm = snvs_rtc_set_alarm,
.alarm_irq_enable = snvs_rtc_alarm_irq_enable,
};
以 snvs_rtc_read_time 函数为例,介绍RTC底层操作函数该如何去编写,该函数用于读取RTC时间值
static int snvs_rtc_read_time(struct device *dev,struct rtc_time *tm) {
struct snvs_rtc_data *data = dev_get_drvdata(dev);
//获取RTC计数值,该值是秒数
unsigned long time = rtc_read_lp_counter(data);
//将获取到的秒数转换为时间值,也就是rtc_time结构体类型
rtc_time_to_tm(time, tm);
return 0;
}
rtc_time 结构体定义如下:
struct rtc_time {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
};
rtc_read_lp_counter 函数,此函数用于读取 RTC 计数值,函数内容如下
static u32 rtc_read_lp_counter(struct snvs_rtc_data *data) {
u64 read1, read2;
u32 val;
//读取RTC_LPSRTCMR和RTC_LPSRTCLR这两个寄存器,得到RTC的计数值
do {
regmap_read(data->regmap, data->offset + SNVS_LPSRTCMR, &val);
read1 = val;
read1 <<= 32;
regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &val);
read1 |= val;
regmap_read(data->regmap, data->offset + SNVS_LPSRTCMR, &val);
read2 = val;
read2 <<= 32;
regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &val);
read2 |= val;
} while ((read1 >> CNTR_TO_SECS_SH) != (read2 >> CNTR_TO_SECS_SH));
/* Convert 47-bit counter to 32-bit raw second count */
return (u32) (read1 >> CNTR_TO_SECS_SH);
}
3. RTC时间相关设置
RTC 是用来计时的,最基本的就是查看时间,Linux内核启动时可以看到系统时钟设置信息查看时间命令:date
设置当前时间:date -s
date -s "2022-08-15 1300"
将当前时间写入到RTC里:hwclock -w
审核编辑 :李倩
全部0条评论
快来发表一下你的评论吧 !