如何使用TinyML在内存受限的设备上部署ML模型呢

描述

介绍

这本书是关于 TinyML 的,TinyML 是一个快速发展的领域,位于机器学习和嵌入式系统的独特交叉点,可以使 AI 在微控制器等极低功耗设备中应用。

TinyML 是一个充满机遇的激动人心的领域。只需很少的预算,我们就可以赋予与周围世界巧妙互动的物体生命,并让我们的生活方式变得更美好。本书想通过实例来扫除这些障碍,让没有嵌入式编程经验的开发者也能上手TinyML。每一章都将是一个独立的项目,以学习如何使用 TinyML 的一些核心技术,与传感器等电子组件接口,以及在内存受限的设备上部署 ML 模型。

License

MIT license

Lattice tinyvision & tingyml

https://github.com/tinyvision-ai-inc

https://www.latticesemi.com/Products/DevelopmentBoardsAndKits/HimaxHM01B0

MCU芯片

上面只是放了Lattice在低功耗FPGA Up5k上实现相关AI例程的参考链接,想关的可以自己搜索,官网上都有相关介绍,github上看着不像官方的,不过也有很多完整的参考设计。

Efinix TinyML

https://github.com/Efinix-Inc/tinyml/tree/661ae30f2bf5b083ab88c7a4e54f0185a859f9b8

MCU芯片

Efinix 提供基于开源 TensorFlow Lite for Microcontrollers (TFLite Micro) C++ 库的 TinyML 平台,该库在 RISC-V 上运行,带有 Efinix TinyML 加速器。

本网站提供端到端设计流程,有助于在 Efinix FPGA 上部署 TinyML 应用程序。介绍了从人工智能 (AI) 模型训练、训练后量化一直到使用 Efinix TinyML 加速器在 RISC-V 上运行推理的设计流程。此外,还展示了 TinyML 在 Efinix 高度灵活的特定领域框架上的部署。

MCU芯片

RISC-V SoC:

MCU芯片

设计流程:

MCU芯片

TinyAcc

https://github.com/kksweet8845/TinyAcc

MCU芯片

这是一个实现具有下降功能的神经网络模型的项目。

总结

今天介绍的TunyML项目只有几个,目前的应用场景还是比较偏向于嵌入式微处理上,只有Lattice和Efinix FPGA在这方面推出了自己的IP及示例程序,而Lattice的发展更倾向于开源的发展(靠开源推广),所以这方面的应用是个“前途”还是“断途”就仁者见仁智者见智了~






审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分