In [ ]
# 安装新版PaddleHub
!pip install paddlehub==1.8.1
In [ ]
# 人脸检测模型导出
import paddlehub as hub
# 加载模型
face_detector = hub.Module(name="pyramidbox_lite_mobile")
# 导出推理模型
face_detector.save_inference_model(
dirname='inference/face_detection',
model_filename='__model__',
params_filename='__params__')
In [ ]
# 人脸验证模型导出
import paddlehub as hub
from paddlehub.dataset.base_cv_dataset import BaseCVDataset
# 新建临时train.txt
with open('data/train.txt', 'w', encoding='UTF-8') as f:
for x in range(100):
f.write('test 0\\n')
import paddlehub as hub
from paddlehub.dataset.base_cv_dataset import BaseCVDataset
# 自定义数据集
class FaceDataset(BaseCVDataset):
def __init__(self):
# 数据集存放位置
self.dataset_dir = "/home/aistudio/data/"
super(FaceDataset, self).__init__(
base_path=self.dataset_dir,
train_list_file="train.txt",
label_list=['0','1']
)
dataset = FaceDataset()
# 使用mobilenet_v3_large_imagenet_ssld预训练模型进行finetune
module = hub.Module(name="mobilenet_v3_large_imagenet_ssld")
# 数据读取器
data_reader = hub.reader.ImageClassificationReader(
image_width=module.get_expected_image_width(),
image_height=module.get_expected_image_height(),
images_mean=module.get_pretrained_images_mean(),
images_std=module.get_pretrained_images_std(),
dataset=dataset)
# 优化器配置
strategy = hub.AdamWeightDecayStrategy(
learning_rate=1e-3,
lr_scheduler="linear_decay",
warmup_proportion=0.1,
weight_decay=0.0001,
optimizer_name="adam")
# 总体配置
config = hub.RunConfig(
use_cuda=False,
num_epoch=10,
checkpoint_dir="mobilenet_v3",
batch_size=100,
eval_interval=100,
strategy=strategy)
# 任务构建
input_dict, output_dict, program = module.context(trainable=True)
img = input_dict["image"]
feature_map = output_dict["feature_map"]
feed_list = [img.name]
task = hub.ImageClassifierTask(
data_reader=data_reader,
feed_list=feed_list,
feature=feature_map,
num_classes=dataset.num_labels,
config=config)
# 加载best_model
task.init_if_load_best_model()
# 导出推理模型
task.save_inference_model(
dirname='inference/face_verification',
model_filename='__model__',
params_filename='__params__')
In [1]
# 检测模型预测
%matplotlib inline
import cv2
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from paddle.fluid.core import AnalysisConfig, PaddleTensor
from paddle.fluid.core import create_paddle_predictor
# 数据预处理
def pre_det(org_im, shrink):
image = org_im.copy()
image_height, image_width, image_channel = image.shape
# 图像缩放
if shrink != 1:
image_height, image_width = int(image_height * shrink), int(
image_width * shrink)
image = cv2.resize(image, (image_width, image_height),
cv2.INTER_NEAREST)
# HWC to CHW
if len(image.shape) == 3:
image = np.swapaxes(image, 1, 2)
image = np.swapaxes(image, 1, 0)
# 归一化
mean = [104., 117., 123.]
scale = 0.007843
image = image.astype('float32')
image -= np.array(mean)[:, np.newaxis, np.newaxis].astype('float32')
image = image * scale
image = np.expand_dims(image, axis=0).astype('float32')
return image
# 数据后处理
# 输入原始图像,根据预测结果绘制人脸预测框,并裁剪人脸图像
def post_det(img, output_datas):
img_h, img_w = img.shape[:2]
new_img = img.copy()
crops = []
for data in output_datas:
label, score, x1, y1, x2, y2 = data
if score>0.8:
x1, y1, x2, y2 = [int(_) for _ in [x1*img_w, y1*img_h, x2*img_w, y2*img_h]]
crop = img[max(0, y1-50):min(y2+50,img_h),max(0, x1-50):min(x2+50,img_w),:]
h, w = crop.shape[:2]
crop = cv2.resize(crop, (200, int(h/w*200))) if w>h else cv2.resize(crop, (int(w/h*200), 200))
row_nums = 200-crop.shape[0]
line_nums = 200-crop.shape[1]
if row_nums%2 ==0:
crop= np.pad(crop,((row_nums//2,row_nums//2),(0,0),(0,0)),'constant')
else:
crop= np.pad(crop,((row_nums//2,row_nums//2+1),(0,0),(0,0)),'constant')
if line_nums%2 ==0:
crop= np.pad(crop,((0,0),(line_nums//2,line_nums//2),(0,0)),'constant')
else:
crop= np.pad(crop,((0,0),(line_nums//2,line_nums//2+1),(0,0)),'constant')
crops.append(crop)
cv2.rectangle(new_img, (x1, y1), (x2, y2), (255, 0, 0), 2)
return new_img, crops
# 创建预测器
def create_predictor(model_file, params_file):
# 创建配置
config = AnalysisConfig(model_file, params_file)
# 关闭GPU
config.disable_gpu()
# 开启mkldnn加速intel平台的CPU推理速度
config.enable_mkldnn()
# 关闭log显示
config.disable_glog_info()
# 开启ir优化
config.switch_ir_optim(True)
# 使用feed和fetch的算子
config.switch_use_feed_fetch_ops(True)
# 根据配置创建预测器
predictor = create_paddle_predictor(config)
return predictor
# 模型预测
def predict_det(predictor, inputs):
# 转换输入数据为PaddleTensor
inputs = PaddleTensor(inputs.copy())
# 执行前向计算
result = predictor.run([inputs])
# 转换输出数据为ndarray
output_data = result[0].as_ndarray()
return output_data
# 实例化检测模型预测器
predictor = create_predictor('inference/face_detection/__model__', 'inference/face_detection/__params__')
# 读取图片
img = cv2.imread('img/test.jpg')
# 原始图片展示
plt.imshow(img[:,:,::-1])
plt.show()
# 图像预处理
img1 = pre_det(img, 0.5)
# 模型预测
output_data = predict_det(predictor, img1)
# 结果后处理
img, crops = post_det(img, output_data)
# 结果图片展示
plt.imshow(img[:,:,::-1])
plt.show()
In [3]
# 验证模型预测
%matplotlib inline
import cv2
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
# 图片拼接
def concatenate(true_img, crop):
new = np.concatenate([true_img,crop],1)
return new
# 数据预处理
def pre_val(img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = Image.fromarray(img)
# 图像缩放
image = img.resize((224, 224), Image.LANCZOS)
# HWC to CHW
mean = np.array([0.485,0.456,0.406]).reshape(3, 1, 1)
std = np.array([0.229,0.224,0.225]).reshape(3, 1, 1)
image = np.array(image).astype('float32')
if len(image.shape) == 3:
image = np.swapaxes(image, 1, 2)
image = np.swapaxes(image, 1, 0)
# 归一化
image /= 255
image -= mean
image /= std
image = image[[0, 1, 2], :, :]
image = np.expand_dims(image, axis=0).astype('float32')
return image
# 创建预测器
def create_predictor(model_file, params_file):
# 创建配置
config = AnalysisConfig(model_file, params_file)
# 关闭GPU
config.disable_gpu()
# 开启mkldnn加速intel平台的CPU推理速度
config.enable_mkldnn()
# 关闭log显示
config.disable_glog_info()
# 开启ir优化
config.switch_ir_optim(True)
# 不使用feed和fetch的算子
config.switch_use_feed_fetch_ops(False)
# 根据配置创建预测器
predictor = create_paddle_predictor(config)
return predictor
# 模型预测
def predict_val(predictor, inputs):
# 获取输入向量名
input_names = predictor.get_input_names()
# 根据输入向量名获取输入向量
input_tensor = predictor.get_input_tensor(input_names[0])
# 将输入数据拷贝进输入向量
input_tensor.copy_from_cpu(inputs)
# 执行前向计算
predictor.zero_copy_run()
# 获取输出向量名
output_names = predictor.get_output_names()
# 根据输出向量名获取输出向量
output_tensor = predictor.get_output_tensor(output_names[0])
# 从输出向量中拷贝输出数据到输出变量上
output_data = output_tensor.copy_to_cpu()
return output_data
# 实例化检测模型预测器
predictor = create_predictor('inference/face_verification/__model__', 'inference/face_verification/__params__')
# 读取图片
img1 = cv2.imread('img/crop_0.jpg')
img2 = cv2.imread('img/crop_1.jpg')
# 图像拼接
img_true = concatenate(img1, img1)
img_false = concatenate(img1, img2)
# 输入图片展示
plt.imshow(img_true[:,:,::-1])
plt.show()
plt.imshow(img_false[:,:,::-1])
plt.show()
# 数据预处理
img_true = pre_val(img_true)
img_false = pre_val(img_false)
# 数据拼接
imgs = np.concatenate([img_true, img_false], 0)
# 模型预测
output_data = predict_val(predictor, imgs)
# 结果后处理
results = np.argmax(output_data, 1)
for i, result in enumerate(results):
if result:
print('第%d个样本匹配' % (i+1))
else:
print('第%d个样本不匹配' % (i+1))
第1个样本匹配
第2个样本不匹配
In [ ]
# 请下载代码并在有摄像头的系统环境中执行
!python face_recognition/main.py
# 导入所需的包
import cv2, threading
import numpy as np
from inference import AnalysisModel
from preprocess import pre_det, pre_val
from postprocess import post_det
from tkinter import Tk, Button
# 按钮点击函数,用于切换人脸
def change_face():
global change_flag
change_flag = True
# 主线程
def main():
global change_flag
# 开启摄像头
cap = cv2.VideoCapture(0)
# 初始化两个模型
model_det = AnalysisModel('inference/face_detection/__model__',
'inference/face_detection/__params__',
True,
False)
model_val = AnalysisModel('inference/face_verification/__model__',
'inference/face_verification/__params__',
False,
True)
tmp = None
font = cv2.FONT_HERSHEY_SIMPLEX
while True:
# 读取当前帧
sucess, img = cap.read()
# 检测数据预处理
img_det = pre_det(img, 0.3)
# 检测模型预测
result_det = model_det.predict_det(img_det)
# 检测结果后处理
img, crops, bboxes = post_det(img, result_det)
# 如果当前人脸信息不为空,则启动人脸验证
if type(tmp) is np.ndarray:
for crop, bbox in zip(crops, bboxes):
# 验证数据预处理
img_val = pre_val(tmp, crop)
x1, y1 = bbox[:2]
# 验证模型预测
result_val = model_val.predict_val(img_val)
# 验证结果后处理
if np.argmax(result_val[0]):
img = cv2.putText(img, 'Success', (x1, y1-4), font, 0.6, (0, 255, 0), 2)
else:
img = cv2.putText(img, 'Faild', (x1, y1-4), font, 0.6, (0, 0, 255), 2)
# 若更换人脸的标识为真,则切换人脸信息
if (len(crops)>0) and change_flag:
tmp = crops[0]
crop = crops[0]
cv2.imshow('Face', crop)
change_flag=False
# 使用窗口显示结果图片
cv2.imshow('Face recognition', img)
k = cv2.waitKey(1)
if k == 27:
#通过esc键退出摄像
cv2.destroyAllWindows()
break
if __name__=='__main__':
global change_flag
change_flag = False
# 初始化按钮界面
root = Tk()
root.title('Button')
button = Button(root, text ="点击抓取人脸图片", command = change_face)
button.pack()
# 初始化主线程
main_thread = threading.Thread(target=main)
# 启动主线程
main_thread.start()
# 启动按钮界面线程
root.mainloop()
全部0条评论
快来发表一下你的评论吧 !