近日,有群友困于STM32的时钟系统。这里就详细介绍一下关于内外时钟切换及时钟超频测试,希望对大家能有所帮助。
诚然,当使用固件库时,把外部晶振摘掉,系统确实会自动切换到内部时钟,但是只会以8M的默认值运行,显然这是十分不可行的,8M的速度直接让我们的STM32病入膏肓,今天的任务就是让STM32失去外挂(晶振)时,依旧可以激情澎湃。
时钟详解这里不过多介绍,自己也没有别人介绍的好,本文旨在解决现实问题。
此处插播广告:群友问过这种问题,外部接8M晶振和16M晶振有啥区别?
以我微薄的经验来看,这两个在用的时候差别不大,如果使用ST的固件库(以STM32F103为例),使用8M的晶振会更方便,不用改任何代码,时钟就是72M的全速运行状态。如果用16M晶振,则需要修改代码:
在stm32f10x.h中修改宏定义HSE_VALUE ((uint32_t)8000000)为HSE_VALUE ((uint32_t)16000000)。
之后进入system_stm32f10x.c,将RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);改为RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSI_Div2| RCC_CFGR_PLLMULL9);此处是将输入时钟二分频为8M,再进行9倍频到72M,和使用了8M没区别。
如果不进行该二分频操作,时钟还是有的,但是会以16M为基准进行9倍频到144M,此时单片机以超频模式运行,也是可以运行的。但是,时钟的精准性不能得到保证。
系统的时钟可以通过添加代码在debug模式下显示:
RCC_ClocksTypeDef ClockInfo;
RCC_GetClocksFreq(&ClockInfo);
通过debug模式下观察ClockInfo的值,便可知道此时系统时钟速度:
这里提一下,在使用外部晶振的情况下,ST即使是超频,依旧发挥稳定,不得不夸一下ST的质量。
此时我将我的开发板以8M的基准倍频16倍,得到128M的主频,使用定时器定时10us,示波器测试无误差。串口通信无误。
以72M的主频跑128依旧稳定,赞一个,因为我的外部晶振只有8M最大只能倍频到128,如果使用外部16M,不知继续倍频可以到多少。不过性能还是很好的。
预留测试GD32的效果:
写本文时,将GD的GD32E230翻出来进行了同样的测试,因为GD的倍频器倍数较高,我已经倍频到144M(标准72M),测试定时器依旧稳定。
广告很长,请忍一下:
上半场结束,下半场继续:
此处歪解一下时钟的问题,之前有群友很疑惑单片机的低功耗和时钟的关系,疑惑高速的时钟会不会增加MCU的功耗,为啥低功耗要降低时钟速度。这里讲解一下:
可以用用单位时间内执行的指令来看,高速时钟在单位时间内使系统跑了更多的指令,而低速时钟单位时间内跑的少,而单片机是直线结构,内核是不会休息的,功耗就看执行的指令多少。而单片机的低功耗就是降低时钟,让单片机跑慢点。就像人一样,低功耗相当于你不跑了,原地休息,但是你的心跳不会停止,你还是得消耗能量,即使再少还得消耗。
就像人一样,时钟就相当于心跳,只要还活着就得消耗能量,你要想跑得快,心脏就得跳得快,跳得越快能量消耗越高,即使你去睡觉,心跳只要不停止,你还得消耗能量,如果心跳没了,整个人就没了,MCU也就宕机了。所以,在处理低功耗时最先解决的就是时钟频率,只有降低了时钟的频率,才能真正降低功耗。关于单片机进入低功耗和唤醒,以及降低整体运行功耗我看能不能在下文讲解,近期刚好做了一个低功耗的项目,这里留悬念吧。
广告结束,正文开始,不好意思,有点喧宾夺主了哈!
回到主题,为了解决时钟切换的问题,才有了这个帖子,上文全属歪楼,为最近开发时的经验总结。
我们在使用STM32103的固件库时,时钟配置在system_stm32f10x.c中,但是只是对外部晶振做了初始化,而对于内部时钟并没有添加代码,如果你的MCU没有外部晶振,当系统运行时是先启动内部时钟,然后会检测外部晶振,如果没有检测到晶振,系统便以内部的8M继续运行,这是不合理的。
这里可以看到,如果外部启动失败,会进入这个else,但是这个else中并未添加任何代码,所以只会用8M的内钟执行,我们要做的就是在else中添加外部启动失败的代码:
/* 开启HSI 即内部晶振时钟 */
RCC->CR |= (uint32_t)0x00000001;
/*选择HSI为PLL的时钟源HSI必须2分频给PLL*/
RCC->CFGR |= (uint32_t)RCC_CFGR_PLLSRC_HSI_Div2;
/*PLLCLK=8/2*13=52MHz 设置倍频得到时钟源PLL的频率*/
RCC->CFGR |= (uint32_t)RCC_CFGR_PLLMULL12;
/* PLL不分频输出 */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* 使能 PLL时钟 */
RCC->CR |= RCC_CR_PLLON;
/* 等待PLL时钟就绪*/
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
/* 选择PLL为系统时钟的时钟源 */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
/* 等到PLL成为系统时钟的时钟源*/
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
{
}
该代码填充后如果检测到有外部时钟,便以外部时钟为基准进行时钟的倍频处理,达到用户想要的时钟频率,如果你的MCU没有外部时钟,则会执行else内部的代码,将时钟源切换到内部时钟并进行倍频,如此便达到了自动检测时钟的目的。
问题:这是我根据STM32F031的时钟切换代码演变来的,但是这个只能用于主频小于或等于48M时使用,如果倍频因子超过12,也就是主频超过48M是,就会出现硬件错误,直接卡死。当需要更高的主频时就需要如下配置。
在else里面最开头添加:
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;
问:如果我的MCU有晶振,但是我不想用外部,就想用内部,如何处理呢?
答:打一顿就好了,有外部不用干啥用内部呢?
上述纯属恶搞自己,被坑过……
因为内部时钟不准!!!测试内部时钟在使用定时器时会有偏差,本人在此吃过亏。此问题在STM32F031和GD32E230中均有体现。但是USART和SPI通信是正常的,即使我用的2.5M波特率的USART和8M的SPI。
解决办法,上述代码不用动,添加如下代码。
通过注释原文RCC->CR |= ((uint32_t)RCC_CR_HSEON);并添加RCC->CR &= ~((uint32_t)RCC_CR_HSEON);可默认之以内部时钟方式启动。 注意:在主函数加上SystemInit();函数哦!!! 最终代码如下:
static void SetSysClockTo72(void)
{
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;
/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
/* Enable HSE */
// RCC->CR |= ((uint32_t)RCC_CR_HSEON);
/*取消改行注释并注释上文,可默认启动内部时钟*/
RCC->CR &= ~((uint32_t)RCC_CR_HSEON);
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
else
{
HSEStatus = (uint32_t)0x00;
}
if (HSEStatus == (uint32_t)0x01)
{
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;
/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
/* PCLK1 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;
/* Configure PLLs ------------------------------------------------------*/
/* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */
/* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */
RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |
RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);
RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |
RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);
/* Enable PLL2 */
RCC->CR |= RCC_CR_PLL2ON;
/* Wait till PLL2 is ready */
while((RCC->CR & RCC_CR_PLL2RDY) == 0)
{
}
/* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 |
RCC_CFGR_PLLMULL9);
/* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL16);
/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
{
}
}
else
{
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;
/* 开启HSI 即内部晶振时钟 */
RCC->CR |= (uint32_t)0x00000001;
/*选择HSI为PLL的时钟源HSI必须2分频给PLL*/
RCC->CFGR |= (uint32_t)RCC_CFGR_PLLSRC_HSI_Div2;
/*PLLCLK=8/2*13=52MHz 设置倍频得到时钟源PLL的频率*/
RCC->CFGR |= (uint32_t)RCC_CFGR_PLLMULL16;
/* PLL不分频输出 */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* 使能 PLL时钟 */
RCC->CR |= RCC_CR_PLLON;
/* 等待PLL时钟就绪*/
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
/* 选择PLL为系统时钟的时钟源 */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
/* 等到PLL成为系统时钟的时钟源*/
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
{
}
}
}
在STM32F030或者STM32F031中,同样可以做类似操作:
static void SetSysClock(void)
{
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;
/* SYSCLK, HCLK, PCLK configuration ----------------------------------------*/
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
//修改为内部晶振
// RCC->CR &= ~((uint32_t)RCC_CR_HSEON);
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
else
{
HSEStatus = (uint32_t)0x00;
}
if (HSEStatus == (uint32_t)0x01)
{
/* Enable Prefetch Buffer and set Flash Latency */
FLASH->ACR = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY;
/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE_DIV1;
/* PLL configuration = HSE * 6 = 48 MHz */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLMULL7);
/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
{
}
}
else
{ /* If HSE fails to start-up, the application will have wrong clock
configuration. User can add here some code to deal with this error */
// HSI 内部时钟做为PLL时钟源并配置PLL 56M做为系统时钟
/* Enable Prefetch Buffer and set Flash Latency */
FLASH->ACR = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY;
/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE_DIV1;
// PLL configuration = (HSI/2) * 12 = 48 MHz
RCC_PLLConfig(RCC_PLLSource_HSI_Div2, RCC_PLLMul_14); // 8M/2 * 14 = 56M
/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* Wait till PLL is ready */
while ((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); // PLL 做系统时钟
/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
{
}
}
}
在STM32F103中,使用内部晶振,最大时钟频率也只能到64M,受倍频因子的影响嘛,最大只能倍频16倍。但在STM32F031中,标准使用内部时钟主频只有48M,但是我们仍然可以继续倍频,用内部时钟进行超频达到64M。在我们的产品中就用过内部超频到56M,USART和SPI长时间无问题。
而GD32E230因为其高达32的倍频因子,内部时钟可以倍频到128M。
但是,这种几分钟内没有明显发热现象,不敢做长时间测试,现在MCU有点小贵。干费一个就心疼。
总之,无论ST还是国产,其主频更适合在规定的范围内运行,但是跑极限在短时间内也没有很大的问题。这些数据仅供参考。
至此单片机时钟讲解就结束了,没有多少理论性的东西,主要是解决一些时钟使用时的问题,自己也总是忘,留帖一篇作为自省。
本文中所有代码都经过本人测试,运行无任何问题,但是对于问题的阐述或者一些见解可能有错误,欢迎大佬们批评指正,一定接受各种批评,努力完善!
审核编辑 :李倩
全部0条评论
快来发表一下你的评论吧 !