【1】我的程序里用了全局变量,但为什么进程正常停止的时候会莫名其妙的core掉
Rule:C++在不同模块(源文件)里定义的全局变量,不保证构造顺序;但保证在同一模块(源文件)里定义的全局变量,按定义的先后顺序构造,按定义的相反次序析构。
我们程序在a.cpp里定义了依次全局变量X和Y;
按照规则:X先构造,Y后构造;进程停止执行的时候,Y先析构,X后析构;但如果X的析构依赖于Y,那么core的事情就有可能发生。
结论:如果全局变量有依赖关系,那么就把它们放在同一个源文件定义,且按正确的顺序定义,确保依赖关系正确,而不是定义在不同源文件;对于系统中的单件,单件依赖也要注意这个问题。
【2】编译器为什么不给局部变量和成员变量做默认初始化
因为效率,C++被设计为系统级的编程语言,效率是优先考虑的方向,c++秉持的一个设计哲学是不为不必要的操作付出任何额外的代价,所以它有别于java,不给成员变量和局部变量做默认初始化,如果需要赋初值,那就由程序员自己去保证。
结论:从安全的角度出发,定义变量的时候赋初值是一个好的习惯,很多错误皆因未正确初始化而起,C++11支持成员变量定义的时候直接初始化,成员变量尽量在成员初始化列表里初始化,且要按定义的顺序初始化。
【3】std::sort()的比较函数有很强的约束,不能乱来啊
相信工作5年以上至少50%的C/C++程序员都被它坑过,我已经听到过了无数个悲伤的故事,《圣斗士星矢》,《仙剑》,还有别人家的项目《天天爱消除》,都有人掉坑,程序运行几天莫名奇妙的Crash掉,这锅好沉。
如果要用,要自己提供比较函数或者函数对象,一定搞清楚什么叫“严格弱排序”,一定要满足以下3个特性:
非自反性
非对称性
传递性
尽量对索引或者指针sort,而不是针对对象本身,因为如果对象比较大,交换(复制)对象比交换指针或索引更耗费。
【4】注意操作符短路
考虑游戏玩家回血回蓝(魔法)刷新给客户端的逻辑。玩家每3秒回一点血,玩家每5秒回一点蓝,回蓝回血共用一个协议通知客户端,也就是说只要有回血或者回蓝就要把新的血量和魔法值通知客户端。
玩家的心跳函数heartbeat()在主逻辑线程被循环调用
void GamePlayer::Heartbeat()
{
if (GenHP() || GenMP())
{
NotifyClientHPMP();
}
}
如果GenHP回血了,就返回true,否则false;不一定每次调用GenHP都会回血,取决于是否达到3秒间隔。
如果GenMP回蓝了,就返回true,否则false;不一定每次调用GenMP都会回血,取决于是否达到5秒间隔。
实际运行发现回血回蓝逻辑不对,Word麻,原来是操作符短路了,如果GenHP()返回true了,那GenMP()就不会被调用,就有可能失去回蓝的机会。OMG,你需要修改程序如下:
void GamePlayer::Heartbeat()
{
bool hp = GenHP();
bool mp = GenMP();
if (hp || mp)
{
NotifyClientHPMP();
}
}
逻辑与(&&)跟逻辑或(||)有同样的问题, if (a && b) 如果a的表达式求值为false,b表达式也不会被计算。
有时候,我们会写出 if (ptr != nullptr && ptr->Do())这样的代码,这正是利用了操作符短路的语法特征。
【5】理解std::vector的底层实现
(a) vector是动态扩容的,2的次方往上翻,为了确保数据保存在连续空间,每次扩充,会将原member悉数拷贝到新的内存块;不要保存vector内对象的指针,扩容会导致其失效 ;可以通过保存其下标index替代。
(b) 运行过程中需要动态增删的vector,不宜存放大的对象本身 ,因为扩容会导致所有成员拷贝构造,消耗较大,可以通过保存对象指针替代。
(c)resize()是重置大小;reserve()是预留空间,并未改变size(),可避免多次扩容;clear()并不会导致空间收缩 ,如果需要释放空间,可以跟空的vector交换,std::vector
(d) 理解at()和operator[]的区别 :at()会做下标越界检查,operator[]提供数组索引级的访问,在release版本下不会检查下标,VC会在Debug版本会检查;c++标准规定:operator[]不提供下标安全性检查。
(e)C++标准规定了std::vector的底层用数组实现,认清这一点并利用这一点。
【6】用c标准库的安全版本(带n标识)替换非安全版本,比如用strncpy替代strcpy,用snprintf替代sprintf,用strncat代替strcat,用strncmp代替strcmp,memcpy(dst, src, n)要确保[dst,dst+n]和[src, src+n]都有有效的虚拟内存地址空间。;多线程环境下,要用系统调用或者库函数的安全版本代替非安全版本(_r版本),谨记strtok,gmtime等标准c函数都不是线程安全的
【7】理解函数调用的性能开销(栈帧建立和销毁,参数传递,控制转移),性能敏感函数考虑inline
X86_64体系结构因为通用寄存器数目增加到16个,所以64位系统下参数数目不多的函数调用,将会由寄存器传递代替压栈方式传递参数,但栈帧建立、撤销和控制转移依然会对性能有所影响。
【8】理解user stack空间很有限,不能在栈上定义过大的临时对象,递归函数要有退出条件且不能递归过深
一般而言,用户栈只有几兆(典型大小是4M,8M),所以栈上创建的对象不能太大;虽然递归函数能简化程序编写,但也常常带来运行速度变慢的问题,所以需要预估好递归深度,优先考虑非递归实现版本。
【9】内存拷贝小心内存越界;memcpy,memset有很强的限制,仅能用于POD结构,不能作用于stl容器或者带有虚函数的类
带虚函数的类对象会有一个虚函数表的指针,memcpy将破坏该指针指向。
对非POD执行memset/memcpy,免费送你四个字:自求多福。
【10】用sprintf格式化字符串的时候,类型和格式化符号要严格匹配,因为sprintf的函数实现里是按格式化串从栈上取参数,任何不一致,都有可能引起不可预知的错误; /usr/include/inttypes.h里定义了跨平台的格式化符号,比如PRId64用于格式化int64_t
【11】stl容器的遍历删除要小心迭代器失效,vector,list,map,set等各有不同的写法
#include
#include #include
#include
#include
int main(int argc, char *argv[])
{
//vector遍历删除
std::vector<int> v(8);
std::generate(v.begin(), v.end(), std::rand);
std::cout << "after vector generate...
";
std::copy(v.begin(), v.end(), std::ostream_iterator<int>(std::cout, "
"));
for (auto x = v.begin(); x != v.end(); )
{
if (*x % 2)
x = v.erase(x);
else
++x;
}
std::cout << "after vector erase...
";
std::copy(v.begin(), v.end(), std::ostream_iterator<int>(std::cout, "
"));
//map遍历删除
std::map<int, int> m = {{1,2}, {8,4}, {5,6}, {6,7}};
for (auto x = m.begin(); x != m.end(); )
{
if (x->first % 2)
m.erase(x++);
else
++x;
}
return 0;
}
有时候遍历删除的逻辑不是这么明显,可能循环里调了另一个函数,而该函数在某种特定的情况下才会删除当前元素,这样的话,就是很长一段时间,程序都运行得好好的,而当你正跟别人谈笑风生的时候,忽然crash,这就尴尬了。
圣斗士星矢项目曾经遭遇过这个问题,基本规律是一个礼拜game server crash一次,折磨团队将近一个月。
比较low的处理方式可以把待删元素放到另一个容器WaitEraseContainer里保存下来,再走一趟单独的循环,删除待删元素。
当然,我们推荐在遍历的同时删除,因为这样效率更高,也显得行家里手。
【12】积极的使用const,理解const不仅仅是一种语法层面的保护机制,也会影响程序的编译和运行
const常量会被编码到机器指令。
【13】理解四种转型的含义和区别,避免用错,尽量少用向下转型(可以通过设计加以改进)
static_cast, dynamic_cast,const_cast,reinterpret_cast,傻傻分不清?
C++砖家说:一句话,尽量少用转型,强制类型转换是C Style,如果你的C++代码需要类型强转,你需要去考虑是否设计有问题。不管您信不信,我反正是信了。
【14】打开的句柄要关闭,加锁/解锁,new/delete,new[]/delete[],malloc/free要配对,可以使用RAII技术防止资源泄露,编写符合规范的代码
Valgrind对程序的内存使用方式有期望,需要干净的释放,所以规范编程才能写出valgrind干净的代码,不然再好的工具碰到不按规划写的代码也是武功尽废啊。
【15】理解多继承潜在的问题,慎用多继承
多继承会存在菱形继承的问题,多个基类有相同成员变量会有问题,需要谨慎对待。
【16】有多态用法抽象基类的析构函数要加virtual关键字
主要是为了基类的析构函数能得到正确的调用。
virtual dtor跟普通虚函数一样,基类指针指向子类对象的时候,delete ptr,根据虚函数特征,如果析构函数是普通函数,那么就调用ptr显式(基类)类型的析构函数;如果析构函数是virtual,则会调用子类的析构函数,然后再调用基类析构函数。
【17】避免在构造函数和析构函数里调用虚函数
构造函数里,对象并没有完全构建好,此时调用虚函数不一定能正确绑定,析构亦如此。
【18】从输入流获取数据,要做好数据不够的处理,要加try catch;没有被吞咽的exception,会被传播
从网络数据流读取数据,从数据库恢复数据都需要注意这个问题。
【19】协议尽量不要传float,如果传float要了解NaN的概念,要做好检查,避免恶意传播
【20】定义宏要遵循常规,要对每个变量加括弧,有时候需要加do {} while(0)或者{},以便能将一条宏当成一个语句。要理解宏在预处理阶段被替换,不用的时候要#undef,要防止污染别人的代码
【21】了解智能指针,理解基于引用计数法的智能指针实现方式,了解所有权转移的概念,理解shared_ptr和unique_ptr的区别和适用场景
考虑用std::shared_ptr管理动态分配的对象。
【22】了解c++高阶特性:模板和泛型编程,union,bitfield,指向成员的指针,placement new,显式析构,异常机制,nested class,local class,namespace,多继承、虚继承,volatile,extern "C"等
有些高级特性只有在特定情况下才会被用到,但技多不压身,平时还是需要积累和了解,这样在需求出现时,才能从自己的知识库里拿出工具来对付它。
【23】了解C++新标准,关注新技术,c++11/14/17、lambda,右值引用,move语义,多线程库等
c++98/03标准到c++11标准的推出历经13年,13年来程序设计语言的思想得到了很大的发展,c++11新标准吸收了很多其他语言的新特性,虽然c++11新标准主要是靠引入新的库来支持新特征,核心语言的变化较少,但新标准还是引入了move语义等核心语法层面的修改,每个CPPer都应该了解新标准。
【24】OOP设计原则并不是胡扯
设计模式六大原则(1):单一职责原则
设计模式六大原则(2):里氏替换原则
设计模式六大原则(3):依赖倒置原则
设计模式六大原则(4):接口隔离原则
设计模式六大原则(5):迪米特法则
设计模式六大原则(6):开闭原则
【25】熟悉常用设计模式,活学活用,不生搬硬套
神化设计模式和反设计模式,都不是科学的态度,设计模式是软件设计的经验总结,有一定的价值;GOF书上对每一个设计模式,都用专门的段落讲它的应用场景和适用性,限制和缺陷,在正确评估得失的情况下,是鼓励使用的,但显然,你首先需要准确get到她。
【26】了解延迟计算、COW和分散计算
比如游戏服务器端玩家的战力,由属性a,b决定,也就是说属性a,b任何一个变化,都需要重算战力;但如果ModifyPropertyA(),ModifyPropertyB()之后,都重算战力却并非真正必要,因为修改属性A之后有可能马上修改B,两次重算战力,显然第一次重算的结果会很快被第二次的重算覆盖。
而且很多情况下,我们可能需要在心跳里,把最新的战力值推送给客户端,这样的话,ModifyPropertyA(),ModifyPropertyB()里,我们其实只需要把战力置脏,延迟计算,这样就能避免不必要的计算。
在GetFightValue()里判断FightValueDirtyFlag,如果脏,则重算,清脏标记;如果不脏,直接返回之前计算的结果。
分散计算是把任务分散,打碎,避免一次大计算量,卡住程序。
延迟计算和分散计算都是常见的套路。
【27】理解字节对齐
自己对齐能让存储器访问速度更快。
自己对齐跟cpu架构相关,有些cpu访问特定类型的数据必须在一定地址对齐的储存器位置,否则会触发异常。
字节对齐的另一个影响是调整结构体成员变量的定义顺序,有可能减少结构体大小,这在某些情况下,能节省内存。
【28】牢记3 rules和5 rules,当然C++11又多了&&的copy ctor和op=版本
只在需要接管的时候才自定义operator=和copy constructor,如果编译器提供的默认版本工作的很好,不要去自找麻烦,自定义的版本勿忘拷贝每一个成分,如果要接管就要处理好。
【29】组合优先于继承,继承是一种最强的类间关系
【30】减少依赖,注意隔离
最大限度的减少文件间的依赖关系,用前向声明拆解相互依赖。
了解pimpl技术。
头文件要自给自足,不要包含不必要的头文件,也不要把该包含的头文件推给user去包含,一句话,头文件包含要不多不少刚刚好。
【31】别让循环停不下来
for (unsigned int i = 5; i >=0; --i)
{
...
}
程序跑到这,纳尼?根本停不下来啊?问题很简单,unsigned永远>=0,是不是心中一万只马奔腾?
解决这个问题很简单,但是有时候这一类的错误却没这么明显,你需要罩子放亮点,多个心眼。
【32】size_t到底是个什么鬼?我该用有符号还是无符号整数?
size_t类型是被设计来保存系统存储器上能保存的对象的最大个数。
32位系统,一个对象最小的单位是一个字节,那2的32次方内存,最多能保存的对象数目就是4G/1字节,正好一个unsigned int能保存下来(typedef unsigned int size_t)。
同样,64位系统,unsigned long是8字节,所以size_t就是unsigned long的类型别名。
对于像索引,位置这样的变量,是用有符号还是无符号呢?像money这样的属性呢?
一句话:要讲道理,用最自然,最顺理成章的类型。比如索引不可能为负用size_t,账户可能欠钱,则money用int。
比如
template <class T> class vector
{
T& operator(size_t index) {}
};
标准库给出了最好的示范,因为如果是有符号的话,你需要这样判断
if (index < 0 || index >= max_num) throw out_of_bound();
而如果是无符号整数,你只需要判断 if (index >= max_num),你认可吗?
【33】对于在启动时加载好,运行中不变化的查询结构,可以考虑用sorted array替代map,hash表等
因为有序数组支持二分查找,效率跟map差不多。对于只需要在程序启动的时候构建(排序)一次的查询结构,有序数组相比map和hash可能有更好的内存命中性(局部命中性)。
运行过程中,稳定的查询结构(比如配置表,需要根据id查找配置表项,运行过程中不增删),有序数组是个不错的选择;如果不稳定,则有序数组的插入删除效率比map,hashtable差,所以选用有序数组需要注意适用场合。
【34】std::map还是std::unorder_map,我真的很纠结
想清楚他们的利弊,map是用红黑树做的,unorder_map底层是hash表做的,hash表相对于红黑树有更高的查找性能。hash表的效率取决于hash算法和冲突解决方法(一般是拉链法,hash桶),以及数据分布,如果负载因子高,就会降低命中率,为了提高命中率,就需要扩容,重新hash,而重新hash是很慢的,相当于卡一下。
而红黑树有更好的平均复杂度,所以如果数据量不是特别大,map是胜任的。
【35】整型一般用int,long就很好,用short,char需要很仔细,要防止溢出
大多数情况下,用int,long就很好,long一般等于机器字长,long能直接放到寄存器,硬件处理起来速度也更快。
很多时候,我们希望用short,char达到减少结构体大小的目的。但是由于字节对齐,可能并不能真正减少,而且1,2个字节的整型位数太少,一不小心就溢出了,需要特别注意。
所以,除非在db、网络这些对存储大小非常敏感的场合,我们才需要考虑是否以short,char替代int,long。
审核编辑 :李倩全部0条评论
快来发表一下你的评论吧 !