有源钳位技术解析

描述

作者:Littelfuse客户经理Rambo Liu

在风电、光伏、新能源汽车、工业变频等大功率应用场合,主电路中母线电容到功率器件间存在较大杂散电感 (几十到几百nH)。功率器件在关断时,由于杂散电感Ls的存在,通过Ls*di/dt感应产生浪涌电压,此感应高电压与前端母线电容电压方向一致,因此功率器件两端叠加的电压尖峰会超过母线电压,在过流或短路发生时甚至可能会超过功率器件的耐受电压而导致损坏。功率器件保护方式有RC吸收回路、软开关以及饱和压降检测限流等,其中RC吸收回路具有以牺牲回路效率为代价,同时可能带来吸收回路温度过高的风险。有源钳位可以直接加在驱动回路里面,通过延缓驱动关断来吸收浪涌能量,能够有效减小尖峰电压起到保护作用,因此有源钳位方案具有占用面积小、成本低、响应速度快、可靠性高等优点。

半桥电路工作时序

下图为典型的直流变换器,输入三相桥式整流,后端半桥,输出采用全波整流,其中输入每相增加保险丝作为过流与短路保护,相地间增加压敏作为防雷击保护,此雷击通常指感应雷。

半桥电路

由于直流母排到IGBT以及IGBT本身存在杂散电感,根据电感续流的特性,在IGBT关断瞬间会在CE两端产生感应电压尖峰,杂散电感用Ls表示,等效电路图如下。

半桥电路

母线电压Vs,电容C1与C3分压,在Q1与Q2 IGBT单个导通的时候,另外一个IGBT的稳态电压Vce为Vs,当Q1与Q2同时关断时,Vce电压为1/2Vs。

对半桥电路IGBT工作时序展开分析:

1. IGBT Q2关断,Q1开通,此时1/2*Vs通过IGBT Q1对变压器原边充电,原边电流Ip持续增加,此时杂散电感Ls跟着一起充能,IGBT Q2两端电压为1/2*Vs。

半桥电路

2. Q2关断,Q1由导通切换到关断状态,此时变压器电流Ip达到最大值,由于电感电流不能突变的特性,变压器原边漏感与电容C3以及IGBT Q2体二极管构成放电回路,此时IGBT Q2输出电容Coss从1/2*Vs放电到二极管导通压降Vd。相应的电源Vs、IGBT Q1、Q2以及杂散电感Ls构成放电回路,因为Q2两端电压逐步下降到二极管压降Vd,Q1电压逐渐上升到母线电压(Vs-Vd),同时由于杂散电感Ls的续流特性,推高Q1两端电压超过母线电压,在过流或短路发生时甚至有可能造成IGBT损坏。

半桥电路

3. Q2关断,Q1关断,变压器原边漏感放电到归零,电容C3通过漏感以及Q2结电容构成充电回路,逐步把Q2电压推到1/2*Vs,Q1电压从Vs下降到1/2*Vs达到平衡状态,变压器原边电流Ip下降到0。

半桥电路

4. Q2开通,Q1关断,电容C3、IGBT Q2与变压器原边构成充电回路,Q2电压下降到饱和压降,Q1电压逐步上升到母线电压Vs,此时Q2两端Vce由于寄生电感电容的存在会有小电压尖峰,变压器原边电流Ip持续上升,线路杂散电感分布于整个线路当中,这里等效电感位置移至下方电压负端便于分析。

半桥电路

5. Q2由导通切换到关断,Q1关断,与工作时序2一样,初始电流Ip为最大值,原边漏感与Q1体二极管、电容C1构成放电回路,Q1电压下降到Vd,Q2电压由于杂散电感的存在电压上升超过(Vs-Vd),尖峰电压达到最大。

半桥电路

6. Q2关断,Q1关断,漏感能量消耗完,母线电压通过IGBT Q1与Q2结电容构成分压回路,Vce电压达到1/2*Vs,接下来就重复时序1的步骤。

半桥电路

IGBT有源钳位电路的意义

IGBT有源钳位的核心是检测Vgc压降,通过延缓IGBT关断,限制因为高di/dt引起的电压尖峰。

(1)有源钳位电路设计要点是在正常工作条件下尽量不参与动作,从而减少关断电压与电流的重叠面积,达到减少损耗提高效率的目的。由于系统杂散电感的存在,IGBT两端不可避免会承受超过母线的尖刺电压,正常工况下通过合理布板与母排设计可以减小此寄生电感,同时通过驱动电阻的合理选配达到IGBT两端电压在关断时不超过其耐压,使其处于安全工作区。

(2)在母线电压过高时,通过杂散电感叠加到IGBT两端的电压可能会达到很高水平,作为电压敏感型器件,超过Vce耐压会使其损坏。有源钳位的目的是通过检测集电极电压限值,通过TVS导通给驱动回路提供电流,使其延缓关断,起到减小电压尖峰的作用。

(3)有源钳位电路是把TVS串联于IGBT门极与集电极,此TVS通常选择小功率400~600W即可。另外一种常见的保护方式是在IGBT CE两端并联吸收回路,此回路不仅功率要求大同时占板面积大,有源钳位通过大功率IGBT本身来消耗此多余的能量,可以有效减少线路元件数量与散热要求。

有源钳位工作时序

如下为典型的有源钳位电路,此电路里面采用2个TVS串联构成,其优点体现在可以耐受更高回路电压,同时可以吸收更大的浪涌能量。其工作原理为:在IGBT集电极电压过高时TVS被击穿,通过限流电阻流进门极,门极电容被充电,在门极电阻Rg两端叠加左负右正电压,因此Vge电压得到抬升,从而使IGBT延缓关断,di/dt斜率变缓,杂散电感产生的电压尖峰减小。

半桥电路

下图为有源钳位动作时IGBT的电流电压波形,初始状态IGBT处于开通状态,此时电路处于充电状态,Ice持续增加,Vce为饱和压降。

半桥电路

1. t0开始驱动关断,驱动电压Vge开始下降,IGBT由饱和区进入线性区,此时Vce电压与Ice交叉构成损耗积分,Vce电压从饱和压降上升,逐步达到TVS击穿动作值。

2. t1开始超过TVS击穿电压,此时击穿电流给门极充电,Vge电压抬升,Vce电压继续提升至峰值,集电极电流Ice以斜率k1速度开始下降。

3. t2开始由于击穿电流的叠加,驱动下降得到延缓,此时集电极电流Ice以斜率K2速度下降,可见此时k2斜率要小于k1,IGBT Vce电压从峰值电压下降到钳位电压。

4. t3开始回路电流下降为0,此时Vce电压下降到母线电压,TVS恢复关断状态,漏电流下降到微安级别,门极驱动斜率恢复,驱动电压下降到开启电压以下,IGBT彻底关断。

从上述时序展开分析可以看出,IGBT关断是从饱和导通区切换到截止区,在这个过程需要跨越线性区,有源钳位的本质是增加此线性区时间来吸收回路中多余的浪涌能量,此较高的能量通过IGBT来吸收可以减少对外部元件布局与散热的需求。

IGBT关断时,主回路中杂散电感中所存储的能量都需要有释放的路径,最常见的就是在IGBT CE两端产生电压尖峰,在关断的过程中,这些能量都以关断损耗的形式耗散在IGBT上。对于电压敏感型器件,过高的尖峰电压会损耗IGBT,因此有源钳位就是将高而窄的电压脉冲转变为矮而宽的脉冲,这个过程中耗散掉的能量仍然是杂散电感所存储的能量。

对于半桥或全桥电路来说,很多人可能有一个误解,认为有源钳位工作时会把IGBT重新打开,导致两个半桥IGBT直通的现象。从前面的时序分析可以看出,有源钳位在动作时IGBT还处于线性区,只是线性区有所延缓,另外一个IGBT并不会在此时导通。有源钳位动作的时间通常不会超过300ns,而IGBT上下管之间的死区时间通常在3us以上,该时间差足以保证IGBT不会出现直通的现象。

有源钳位应用案例与改进型方案

假定变频器应用条件,选定IFX FF600R12ME7 1200V 600A 半桥IGBT模块,TVS为Littelfuse SMBJ300CA 峰值功率Pppm为600W 工作电压Vr 300V,已知条件如下:

回路母线电压最大为600V。

回路杂散电感为100nH,从规格书可以看出IGBT漏感为20nH,因此叠加到IGBT上的总杂散电感为120Nh。

IGBT选定外置驱动电阻Rgoff为0.51Ω。

IGBT关断di/dt为7800A/us。

TVS 击穿电压Vbr 335~371V @it 1mA。

TVS钳位电压电流为Vc 486V @ Ipp 1.3A。

半桥电路

回路当中如果没有TVS有源钳位,此时IGBT两端电压Vce为母线电压与杂散电感产生电压Vls叠加。

Vce=Vdc+Ls*di/dt=1536V

可见此电压超过1200V的耐压会导致IGBT损坏。

在门级串联2个SMBJ300CA之后,当IGBT关断时集电极电压超过击穿电压,TVS即被击穿,随着击穿电压的提升,其击穿电流也上升,对于门极关断的延缓效果就越明显。

IGBT驱动电流通常为几个安培,因此这里选定TVS钳位电流为2A,通过等效内阻计算,其中击穿电压Vbr为335V换算到Vc为567.3V, 当Vbr为371V对应的Vc为547.92V,具体钳位电压换算方法可以参考TVS选型计算文档。两个TVS串联后的电压为1124.6V,小于IGBT本身耐压1200V,因此在延缓IGBT关断的同时可以起到很好的保护作用。

实际电路中有可能会碰到TVS动作保护电压远高于TVS钳位电压的情况,但是由于尖峰电压通常为ns级,通过功率脉冲宽度曲线可以看到在1us脉冲下,SMBJ系列脉冲功率可以超过10kw,因此在有源钳位保护电路中可以选择功率与尺寸小的TVS,SMBJ系列相对比较常用。

对于工作电压与钳位保护电压要求比较接近的应用,比如母线电压还是600V,回路当中采用1000V IGBT,显然TVS在达到钳位电压1124.6V时会导致IGBT损坏,同时由于TVS工作电压要高于600V的工作电压,以免TVS在正常工作情况下击穿导致其过热损坏。此时就可以考虑引入改进型有源钳位电路。

半桥电路

这个电路的特点是,将TVS的电流通过电阻R1引至驱动IC推动级的前级,相当于给TVS的电流增加了一级增益。这可以减少流过TVS的电流,通过缩窄TVS工作电压Vr与保护电压Vc1的幅值,提高这个电路对于尖峰电压的保护效果。我们也知道驱动电路推挽电路具有输入与输出的时间延迟与相位滞后,对于浪涌能量较大的情况可能会导致IGBT电压上升过快而损坏,此时保留电阻R2,当IGBT两端电压远超击穿电压时,可以在前级动作前起到延缓IGBT关断的作用。该改进型的两级保护可以起到更好的保护效果,同时也要时刻关注正常工作电压下TVS的漏电流对于驱动电路的影响,对于TVS的电压选型更为严苛。

  审核编辑:汤梓红

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分