一文详解集成电路封装基板工艺

EDA/IC设计

1052人已加入

描述

随着信息技术革命的到来,集成电路产业飞速发展,电子系统集成度的提高将导致功率密度升高,以及电子元件和系统整体工作产生的热量增加,因此,有效的电子封装必须解决电子系统的散热问题。 在此背景下,陶瓷基板具备优良的散热性能使得市场对其需求快速爆发,尤其是氮化铝陶瓷基板产品,尽管价格远高于其它基板,仍是供不应求甚至“一片难求”,这是为什么呢?

原因很简单,小编认为有三点:其一,性能好,用起来“香”,物有所值,在某些领域无法替代,一分钱一分货的道理大家都懂。其二,生产过程”历经八十一难”,得之不易,对原材料要求高,制品制备工艺复杂,生产门槛较高。其三,市场发展迅速,产能扩张速度跟不上需求增速,供货周期长,价格自然水涨船高。今天我们就这三点进一步了解氮化铝陶瓷基板。 出色的导热性能 首先,封装基板主要利用材料本身具有的高热导率,将热量从芯片 (热源) 导出,实现与外界环境的热交换。对于功率半导体器件而言,封装基板必须满足以下要求:

(1)热导率高,满足器件散热需求;

(2)耐热性好,满足功率器件高温(大于200°C)应用需求;

(3)热膨胀系数匹配,与芯片材料热膨胀系数匹配,降低封装热应力;

(4)介电常数小,高频特性好,降低器件信号传输时间,提高信号传输速率;

(5)机械强度高,满足器件封装与应用过程中力学性能要求;

(6)耐腐蚀性好,能够耐受强酸、强碱、沸水、有机溶液等侵蚀;

(7)结构致密,满足电子器件气密封装需求。

氮化铝性能如何呢?氮化铝作为陶瓷基板材料其性能如下:

(1)氮化铝的导热率较高,室温时理论导热率最高可达320W/(m·K),是氧化铝陶瓷的8~10倍,实际生产的热导率也可高达200W/(m·K),有利于LED中热量散发,提高LED性能;

(2)氮化铝线膨胀系数较小,理论值为4.6×10-6/K,与LED常用材料Si、GaAs的热膨胀系数相近,变化规律也与Si的热膨胀系数的规律相似。另外,氮化铝与GaN晶格相匹配。热匹配与晶格匹配有利于在大功率LED制备过程中芯片与基板的良好结合,这是高性能大功率LED的保障;

(3)氮化铝陶瓷的能隙宽度为6.2eV,绝缘性好,应用于大功率LED时不需要绝缘处理,简化了工艺;

(4)氮化铝为纤锌矿结构,以很强的共价键结合,所以具有高硬度和高强度,机械性能较好。另外,氮化铝具有较好的化学稳定性和耐高温性能,在空气氛围中温度达1000℃下可以保持稳定性,在真空中温度高达1400℃时稳定性较好,有利于在高温中烧结,且耐腐蚀性能满足后续工艺要求。

由以上看来,氮化铝陶瓷具有高热导率、高强度、高电阻率、密度小、低介电常数、无毒、以及与Si 相匹配的热膨胀系数等优异性能,是最具发展前途的一种陶瓷基板材料。

复杂繁琐的生产过程 氮化铝陶瓷基板的生产过程较为复杂繁琐,其主要体现在两个方面,高端氮化铝粉体的制备与基板的制备。我们分别来了解下这两方面。 1、氮化铝粉体 几乎所有的陶瓷制品的质量都极大受到原材料品质的影响,对氮化铝陶瓷基板来说更是如此。 (1)粉体制备方法 目前制备氮化铝粉体的方法主要有Al2O3粉碳热还原法、Al粉直接氮化法、自蔓延高温合成法、化学气相沉积法、等离子体法等。AlN粉体作为一种性能优异的粉体原料,国内外研究者通过不断的科技创新来解决现有工艺存在的技术问题,同时也在不断探索新的、更高效的制备技术。目前最主要的工艺仍是碳热还原法和直接氮化法,这两种工艺具有技术成熟、设备简单、得到产品质量好等特点,已在工业中得到大规模应用。

集成电路

(来源:蒋周青等.氮化铝粉体制备技术的研究进展) (2)影响粉体性能因素较多 氮化铝陶瓷产品的性能直接取决于原料粉体的特性,尤其是氮化铝最有价值的特性——导热性。影响氮化铝陶瓷导热性的因素主要有:氧及其它杂质的含量、烧结的致密度、显微结构等。而这些因素体现在氮化铝粉体上则为:氮化铝的纯度、颗粒的粒径、颗粒的形状等参数上。 (3)易水解,难存储运输,需对粉体进一步改性处理 相比氮化铝的其它优异性能,氮化铝粉体有个大问题就是容易水解。它在潮湿的环境极易与水中羟基形成氢氧化铝,在AlN粉体表面形成氧化铝层,氧化铝晶格溶入大量的氧,降低其热导率,而且也改变其物化性能,给AlN粉体的应用带来困难。目前的应对方法是,借助化学键或物理吸附作用在AlN颗粒表面涂覆一种物质,使之与水隔离,从而避免其水解反应的发生。抑制水解处理的方法主要有:表面化学改性和表面物理包覆。

2、基板制备 (1)陶瓷基片的成型 流延成型制备氮化铝陶瓷基片的主要工艺,将氮化铝粉料、烧结助剂、粘结剂、溶剂混合均匀制成浆料,通过流延制成坯片,采用组合模冲成标准片,然后用程控冲床冲成通孔,用丝网印刷印制金属图形,将每一个具有功能图形的生坯片叠加,层压成多层陶瓷生坯片,在氮气中约700℃排除粘结剂,然后在1800℃氮气中进行共烧,电镀后即形成多层氮化铝陶瓷。此外,氮化铝基板的成型方式还有注射成型、流延等静压成型等。 (2)关键步骤-烧结 烧结可以说是氮化铝基板制备中至关重要的一步,主要牵扯到烧结方式的选择、烧结温度的控制、烧结助剂的添加、烧结气氛的控制等。 目前AlN基片较常用的烧结工艺一般有5种,即热压烧结、无压烧结、放电等离子烧结(SPS)、微波烧结和自蔓延烧结。AlN陶瓷基片一般采用无压烧结,该烧结方法是一种最普通的烧结,虽然工艺简单、成本较低,但烧结温度一般偏高,在不添加烧结助剂的情况下,一般无法制备高性能陶瓷基片。 在烧结炉中,烧结温度的均匀性深刻影响着AlN陶瓷。烧结温度均匀性的研究也为大批量生产、降低生产成本提供了保障,有利于实现AlN陶瓷基片产品的商业化生产。

对于陶瓷致密烧结,添加助烧剂无疑是最为经济、有效的方法。AlN陶瓷基板可选用的烧结助剂有CaO、Li2O、B2O3、Y2O3、CaF2、CaC2以及CeO2等。这些材料在烧结过程发挥着双重作用,首先与表面的Al2O3结合生成液相铝酸盐,在粘性流动作用下,加速传质,晶粒周围被液相填充,原有的粉料相互接触角度得以调整,填实或者排出部分气孔,促进烧结。同时助烧剂可与氧反应,降低晶格氧含量。 在AlN陶瓷的烧结工艺中,烧结气氛的选择也十分关键的。一般的AlN陶瓷烧结气氛有3种:还原型气氛、弱还原型气氛和中性气氛。还原性气氛一般为CO,弱还原性气氛一般为H2,中性气氛一般为N2。在还原气氛中,AlN陶瓷的烧结时间及保温时间不宜过长,烧结温度不宜过高,以免AlN被还原。在中性气氛中不会出现上述情况,所以一般选择在氮气中烧结,这样可以获得性能更好的AlN陶瓷。   市场状况 在粉体方面,目前掌握高性能氮化铝粉生产技术的厂家并不多,主要分布在日本、德国和美国。日本的德山化工生产的氮化铝粉被全球公认为质量最好、性能最稳定,公司控制着高纯氮化铝全球市场75%的份额。日本东洋铝公司的氮化铝粉性能较好,在日本和中国受到不少客户的青睐。 在国内,开展AlN粉研究、生产的厂家也有一些,主要有中电科第43所、国瓷材料、厦门钜瓷、宁夏艾森达新材料科技有限公司、宁夏时星科技有限公司、烟台同立高科新材料股份有限公司、辽宁德盛特种陶瓷制造有限公司、山东鹏程陶瓷新材料科技有限公司、三河燕郊新宇高新技术陶瓷材料有限公司、福建施诺瑞新材料有限公司、晋江华清新材料科技有限公司等。 但是由于国内氮化铝粉末行业发展时间晚,产业化时间短,产量很低,粉体性能与国外相比也存在较大差距,只能满足国内部分市场的需求。 而在陶瓷基片方面,我国氮化铝陶瓷基片生产企业规模较小,研发投入资金有限,技术人员较少且经验不足,导致我国氮化铝陶瓷基片行业整体水平较低,产品缺乏竞争力,以中低端产品为主,高端氮化铝基片同样依赖于进口。日本有多家企业研发和生产氮化铝陶瓷基片,是全球最大的氮化铝陶瓷基片生产国,主要研发生产氮化铝陶瓷基片产品的公司包括如京瓷、日本特殊陶业、住友金属工业、富士通、东芝、日本电气等。由于氮化铝陶瓷基片的特殊技术要求,加上设备投资大、制造工艺复杂,高端氮化铝陶瓷基片核心制造技术被日本等国家的几个大公司掌控。 目前我国在加力追赶阶段,国内已有福建华清电子材料科技有限公司、中电科四十三所、三环集团、河北中瓷、合肥圣达电子、浙江正天新材料、深圳市佳日丰泰电子、宁夏艾森达、宁夏时星、福建臻璟、江苏富乐德、南京中江等多个企业实现了氮化铝陶瓷基板的国产化,随着中国下游电子产业的不断发展,未来氮化铝基板的市场需求也会随之增长;此外,随着我国氮化铝基板生产技术的不断提升,氮化铝基板产品也将不断升级,将会进一步推动其应用领域的拓展,需求规模也会得到扩张。整体来看,未来中国氮化铝基板行业发展前景十分广阔。

参考来源:

[1]程 浩,陈明祥等.电子封装陶瓷基板

[2]蒋周青等.氮化铝粉体制备技术的研究进展

[3]刘战伟等.氮化铝粉末的制备方法及影响因素

[4]李友芬等.AlN陶瓷烧结技术研究进展

[5]张云等.高导热氮化铝陶瓷烧结技术研究进展

=========================================

附 集成电路封装基板工艺详解

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

集成电路

编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分