汽车 RF 前端主要设计技巧

电子说

1.3w人已加入

描述

无线汽车设计愈来愈复杂。下面介绍如何解决此问题

谁能想象汽车生态系统如何演变?过去汽车只是一种简单的运输方式,如今演变成具有复杂的计算机系统,并且能够将汽车自身与我们及周围的世界连接在一起。现在,它可实现一定程度的自主驾驶,与网络通信,并提供娱乐服务。分析师预测,这些发展趋势日益强盛。据麦肯锡公司的报告,未来几年,联网汽车的数量将以每年 30% 的速度增长;到 2020 年,五分之一的汽车将接入互联网。Strategy Analytics 预测,汽车处理和线性高级驾驶员辅助系统 (ADAS) RF 前端 (RFFE) 市场规模最大,复合年增长率 (CAGR) 达 17% (2017-2022)。

那么汽车 RF 工程师如何设计互联汽车呢?让我们先来看看如何克服汽车设计中的一些最大的 RF 挑战。
 

当今的汽车格局:复杂的标准和挑战生态系统

当今的汽车有很多可与世界互联的电子器件。对于 RF 系统,这意味着随着汽车制造商在车内放置更多的电信设备,就会出现很多 RFFE 链。下图显示了一个通用系统的示例。

RF

汽车 RF 生态系统的变化给 RF 系统设计人员带来了多个挑战:

将多个支持不同标准的器件集成到汽车中,有时集成到一个模块中

由于许多支持不同标准的器件相邻,存在共存问题

最大限度地减少电子部件发热

更加关注功耗,因为所有车辆设备都使用同一个电池电源

确保产品组件具有长期可靠性

并非汽车行业才有这些挑战,可以采用与 Wi-Fi 连接性和移动设备等其他应用类似的战略克服这些挑战。下面是选择汽车 RF 元件时的一些基本设计技巧:

使用高度线性的有源或前端设备。

使用能够尽量减少 RFFE 中的插入损耗和减少总 RF 链路预算的组件。

关注 RFFE 的效率、电流消耗和功耗。

使用高性能 RF 滤波器,以尽量减少插入损耗、温度漂移和干扰。

考虑使用在单个封装中整合传输、接收和过滤功能的组件。

使用符合 IATF 和 IEC 行业标准的汽车应用级产品。


下面我们更深入地探讨 RF 共存、集成、天线设计、热管理、电池使用寿命和汽车可靠性的设计考量。
 

解决 RF 共存问题

需要流传输视频的用户希望在汽车中提供快速、可靠的服务,而在车辆内部通过网络进行流传输正迅速成为标准设置。因此,在维护流媒体服务时,务必最大限度地减少共存问题并降低线路损耗。

但是,最大限度地支持无线频段和标准之间的共存是一项艰巨的任务。如果未采用适当的滤波配置,在以下频率可能会增加共存问题:

2.4 GHz:

Wi-Fi 和蜂窝通信,如 LTE 频段 41

Wi-Fi 和蓝牙

SDARS(卫星数字音频广播服务)和 LTE

5 GHz:

Wi-Fi 和 V2X(802.11p 和 C-V2X)

V2X 和 U-NII(未经许可的国家信息基础设施)频段,具体为 U-NII-3 

相关博客文章:未来车联网采用的 V2X

从 2.4 GHz 和 5 GHz 频谱图中可看到,在车联网中使用无线技术的带宽是多么拥挤。

RF

RF

那么,缓解这些共存问题的最佳方法是什么?一些最佳做法是在设计中使用高性能 RF 滤波器和高线性度有源器件。

滤波器可以减少无线电信号之间的带外干扰。

共存滤波器可以减轻传输信号可能存在的灵敏度降低现象。


如今的车辆通信支持天线和收发器之间的许多传输和接收路径,而隔离这些路径需要使用滤波器。这些滤波器必须:

隔离共存频段。

具有较低的插入损耗,以尽量减少传输功耗。

优化接收器灵敏度。

集成至关重要

移动电话行业已经从分立元件向高度集成的系统模块过渡。随着汽车中整合更多连接性,汽车制造商也必须随之相应转变。将更多的功能集成到前端模块 (FEM) 或滤波器模块中有助于简化 RF 设计,如下一个框图所示。

(额外的好处?集成正确的滤波器技术本质上有助于解决我们前面讨论过的共存问题,以及热挑战。)

RF

汽车工程师过去只关注 GPS 和蓝牙,但现在必须针对 C-V2X 等新无线标准,以及未来的 5G 新无线电 (NR) 进行设计。设计人员必须学习以下框图中所示的所有技术,同时将其融入汽车设计中。很有可能是使用移动电话技术作为跳板。

RF

Qorvo 工程师创建的 RF Fusion™可帮助我们的客户利用集成解决方案,有效地降低设计复杂性,并缩短上市时间。其中许多复杂模块包括嵌入式滤波器,进一步降低了 RF 复杂度和总链路预算。
 

天线和 RFFE

想象一下将鲨鱼鳍天线连接到电缆,然后连接到汽车其他地方(通常在仪表盘中)的低噪声放大器 (LNA)。虽然在传统车辆制造中使用电缆是很常见的做法,但长距离布线会导致天线和 RFFE 之间产生插入损耗(增加链路预算)。这也会增加 LNA 输入端的噪声系数 (Nf),特别是在蜂窝和 Wi-Fi 场景中,并降低信号和接收器的灵敏度。如果天线能接收到较低的功率电平,其灵敏度就会提高。

避免这种情况的一种方式是将鲨鱼鳍模块中的天线和 RFFE 组件安装在车顶,尽可能靠近信号输入,并设在任何布线之前。通过靠近天线集成 RFFE,可以最大限度地减少 NF 并提高信号性能,而保持低 NF 也有助于提高接收器灵敏度。

RF

此方法也可用于改进天线的传输功能。减少布线并将功率放大器 (PA) 置于最接近天线的位置将有助于减少插入损耗和功耗。如果在发送信号之前,传输端需要更多的电源,也可以使用鲨鱼鳍模块中的补偿器放大信号,并补偿电缆长度造成的损耗和链路预算。
 

热管理

在汽车应用中,关键的设计挑战之一是车内和外部环境中的热管理。汽车产品会发热,这种温度升高现象会影响系统级 RF 调谐和性能。

所有无线连接和电子器件仍处在较小的汽车空间内。有限的区域内辐射热量会增加。发热也会影响汽车的可靠性,从而影响汽车的安全性能。

若要缓解发热问题,需要注意以下关键参数:

RFFE 效率

电流消耗

功耗


设计人员可以使用一些传导和对流冷却的散热方法,但这些在汽车中的作用有限。而小尺寸的产品外形使这一热挑战变得更加复杂。以下技术有助于解决与热有关的 RF 问题:

使用组件制造商提供的 PC 板布局文件和评估板。您最好获取并使用制造商的设计,因为他们的布局经过了散热和热效率优化。

使用随温度条件变化最小或没有变化的 RF 滤波器。如下图所示,由于温度变化,滤波器向左或向右漂移。对于汽车系统,务必使用具有出色的温度稳定性、低插入损耗和高品质因数的温度补偿滤波器,如 Qorvo 的 BAW 技术产品,帮助解决与热相关的问题(以及共存)。BAW 技术的温度稳定性比 SAW 平均高 50%。

使用高线性度前端产品。通过使用高线性度前端产品可提高 PA 效率,从而优化系统效率并减少热量。在 RFFE 中保持最小插入损耗至关重要,特别是在运行发热时。RFFE 性能不佳会影响整个汽车系统的电流消耗,并增加系统处理器的工作负荷。而处理器高负荷工作反过来会导致发热,系统性能降低,并消耗车辆电池电量。

RF

电池使用寿命

2017 年,J.D. Power 汽车可靠性研究报告指出,电池故障首次成为车主面临的十大问题之一。据其研究结果显示,电池是更换最频繁的部件,与正常磨损无关。在使用了 3 年的汽车中,更换电池的比例为 6.1%,比 2016 年增加了 1.3%。他们发现,许多复杂的新型车载电子系统(如信息娱乐、智能手机连接、语音识别和无钥门禁)消耗的电流增加,使电池使用寿命缩短。

例如用于解锁和起动汽车的汽车遥控钥匙。车主使用此功能是为了方便,但它会耗尽汽车电池。如果将遥控钥匙靠近车辆或放在车内,发射器和接收器会持续通信,对车辆进行 ping 操作。测试表明,将遥控钥匙靠近车辆,相比放在车外,电池消耗得更快。

随着新的无线和有线技术进入汽车领域,采取以下措施来延长电池使用寿命至关重要:

使用功耗低的设备解决方案。

了解空闲和运行期间的 RFFE 功耗。

使用随温度条件变化最小或没有变化的滤波器。

可靠性和长期性能

汽车电子行业为 RF 半导体供应商提供了稳健的收入增长前景。ADAS、电动汽车、人机界面 (HMI) 和互联信息娱乐等应用领域中的创新技术正在推动半导体行业发展,汽车工程师必须使 RF 和其他子系统实现无缝协同工作。这些半导体还需要满足汽车行业制定的严格可靠性要求。

使用商用部件而不是专用汽车应用级产品可能很有诱惑力。但是,选择专为汽车应用而设计并且已经通过 IATF 和 IEC 认证测试的产品,有助于确保您的 RF 系统长期稳定地工作。

相关博客文章:汽车质量标准初阶入门: 哪些认证标准与我们息息相关

前进的动力

汽车制造商正以创纪录的速度向前发展,以满足消费者实现移动无线连接和更强自动驾驶汽车的期待。在这一发展进程中,汽车内部和外部使用的 RF 技术也将日益重要。通过使用高度集成的 RF 组件并借助创新型智能手机技术,汽车制造商在未来开发互联自动驾驶汽车方面将处于领先地位。

车联网 For Dummies®

RF


审核编辑 黄昊宇

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分