AD74115H和ADP1034之所以成为出色的低功耗解决方案,原因在于集成PPC功能的引入。PPC使用户能够按照需求调整VOUT1电压(AD74115H AVDD电源电压)。这种方法可以大大降低模块在低负载条件下的功耗,特别是在电流输出模式下。使用PPC功能时,系统中的主机控制器通过SPI向AD74115H发送所需的电压代码,该代码随后通过单线串行接口(OWSI)传递至ADP1034。OWSI实现了CRC校验功能,非常稳健,可抵抗恶劣工业环境中可能存在的EMC干扰。 查看功耗计算示例可知,如果AVDD = 24 V且负载为250Ω,则对于20mA的电流输出,模块总功耗为748mW。当使用PPC将AVDD电压降至8.6V(负载电压+裕量)时,模块功耗约为348mW。这表明模块内节省了400mW的功耗。
图1.ADP1034和AD74115H电路图
示例1(无PPC):AD74115H输出功率 = (AVDD = 24V) × 20 mA = 480 mWAD74115H输入功率 = AD74115HQUIESCENT(206 mW) + ADC功耗(30 mW) + 480 mW =716 mW模块输入功率 = 716 mW + ADP1034功耗(132 mW) = 848 mW负载功耗 = 20 mA2 × 250 Ω = 100 mW模块总功耗 =(模块输入功率 - 负载功耗)= 748 mW 在示例2中可以看到,当使能PPC功能以将AVDD降低到所需电压(20 mA × 250 Ω) + 3.6 V裕量 = 8.6 V时,模块的功耗降至348 mW。
示例2(使用PPC):AD74115H输出功率 = (AVDD = 8.6 V) × 20 mA = 172 mWAD74115H输入功率 = AD74115HQUIESCENT(136 mW) + ADC功耗(30 mW) + 172 mW =338 mW模块输入功率 = 338 mW + ADP1034功耗(100 mW) = 448 mW负载功耗 = 20 mA2 × 250 Ω = 100 mW模块总功耗 =(模块输入功率 - 负载功耗)= 348 mW 图2显示了AD74115H应用板上在25°C时的实测功耗。测量结果表明,功耗略低于计算的功耗。此结果会因器件而略有不同。
图2. 测量数据:驱动20 mA到250 Ω负载,AVDD = 24 V,AVDD = 8.6 V(使用PPC)
图3显示了使用PPC的模块(ADP1034和AD74115)功耗(针对每个负载电阻值设置优化的AVDD)与不同负载电阻值的关系。两个不同的电压被施加于ADP1034的VINP(15V和24 V),以显示ADP1034的效率。测量是在25°C下进行。
图3. 20 mA输出时功耗与RLOAD的关系
图4显示了不同温度下使用PPC的功耗(针对每个负载电阻值设置优化的AVDD)与不同负载电阻值的关系。
图4.功耗与温度的关系
表1.使用PPC的AD74115H典型用例功耗
数字输出用例 在工业应用中,数字输出被认为是最耗电的使用场景。AD74115H支持内部和外部拉电流与灌电流数字输出。ADP1034可为内部数字输出功能提供足够的功率,支持最高100 mA的连续拉电流或灌电流。在这种情况下,数字输出电路电源DO_VDD直接连接到AVDD。对于100 mA以上的电流,必须使用外部数字输出功能,这需要将额外的电源连接到DO_VDD。
图5.系统电源=24 V,DO_VDD电压=24V
图6. 系统电源=24 V,DO_VDD电压=12V
数据隔离和解决方案尺寸 ADP1034采用ADI公司的iCoupler专利技术,在7mm×9mm封装中集成了三个隔离电源轨,包括SPI数据和三个GPIO隔离通道。这种高集成度将所有通道隔离要求整合到PCB上的一个小区域中,有助于解决PCB面积挑战,而且实现了省电。当通道不使用时,ADP1034的控制器端将其他SPI隔离器通道置于低功耗状态。这意味着通道仅在需要时才处于活动状态。三个隔离GPIO通道用于隔离AD74115H的RESET、ALERT和ADC_RDY引脚,从而满足AD74115H的所有隔离要求,而无需增加额外的隔离器IC成本。全部0条评论
快来发表一下你的评论吧 !