控制/MCU
STM32的启动文件
STM32作为一款单片机,它的启动方式很简单,即当Boot配置了从内部Flash启动模式之后,一上电程序就会从0x8000000地址处开始执行文件,因此我们在使用Keil设置程序起始地址的时候,需要将这个Flash地址设置成0x8000000,只有将这个地址设置成0x8000000,生成的hex文件才可以被正常烧录到此地址,单片机上电之后才可以正常启动。而如果使用J-Flash工具烧写Hex文件时,这个地址会自动根据Hex文件解析出来。然而如果当你烧写二进制Bin文件时,还需要手动将单片机的起始地址制定出来,关于Hex文件和Bin文件的异同点,这个又是可以长篇大论一番了,我们下次特别写文章来讲。
图1 Keil设置起始地址和空间
STM32启动文件
;********************* (C) COPYRIGHT 2017 STMicroelectronics ********************
;* File Name : startup_stm32l151xb.s
;* Author : MCD Application Team
;* Description : STM32L151XB Devices vector for MDK-ARM toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR
;* address.
;* - Configure the system clock
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the Cortex-M3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;********************************************************************************
;*
;* Copyright (c) 2017 STMicroelectronics. All rights reserved.
;*
;* This software component is licensed by ST under BSD 3-Clause license,
;* the "License"; You may not use this file except in compliance with the
;* License. You may obtain a copy of the License at:
;* opensource.org/licenses/BSD-3-Clause
;*
;*******************************************************************************
;* <<< Use Configuration Wizard in Context Menu >>>
;
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_STAMP_IRQHandler ; Tamper and Time Stamp
DCD RTC_WKUP_IRQHandler ; RTC Wakeup
DCD FLASH_IRQHandler ; FLASH
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_IRQHandler ; ADC1
DCD USB_HP_IRQHandler ; USB High Priority
DCD USB_LP_IRQHandler ; USB Low Priority
DCD DAC_IRQHandler ; DAC
DCD COMP_IRQHandler ; COMP through EXTI Line
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD 0 ; Reserved
DCD TIM9_IRQHandler ; TIM9
DCD TIM10_IRQHandler ; TIM10
DCD TIM11_IRQHandler ; TIM11
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTC_Alarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USB_FS_WKUP_IRQHandler ; USB FS Wakeup from suspend
DCD TIM6_IRQHandler ; TIM6
DCD TIM7_IRQHandler ; TIM7
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler routine
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
IMPORT SystemInit
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_STAMP_IRQHandler [WEAK]
EXPORT RTC_WKUP_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_IRQHandler [WEAK]
EXPORT USB_HP_IRQHandler [WEAK]
EXPORT USB_LP_IRQHandler [WEAK]
EXPORT DAC_IRQHandler [WEAK]
EXPORT COMP_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT TIM9_IRQHandler [WEAK]
EXPORT TIM10_IRQHandler [WEAK]
EXPORT TIM11_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT USB_FS_WKUP_IRQHandler [WEAK]
EXPORT TIM6_IRQHandler [WEAK]
EXPORT TIM7_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_STAMP_IRQHandler
RTC_WKUP_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_IRQHandler
USB_HP_IRQHandler
USB_LP_IRQHandler
DAC_IRQHandler
COMP_IRQHandler
EXTI9_5_IRQHandler
TIM9_IRQHandler
TIM10_IRQHandler
TIM11_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTC_Alarm_IRQHandler
USB_FS_WKUP_IRQHandler
TIM6_IRQHandler
TIM7_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END
;************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE*****
首先让我们来看下STM32启动文件,当MCU上电复位之后,整个程序会跳转到以0x8000000为基址,偏移0的地址处,即还是0x8000000。但是STM32的0x8000000地址处存放的并不是整个芯片的第一句指令,而是整个芯片的堆栈初始化程序,如图2所示。
图2 0x8000000偏移0地址处的堆栈初始化程序指针
由于STM32的地址空间都是4字节对齐的,因此这个栈顶指针的存放空间为4字节,所以STM32复位之后跳转的地址应该是0x8000000基址偏移4个字节,即0x8000004。如同3所示。
图3 STM32复位跳转地址
图3中的程序非常浅显易懂,第136和137行,即将程序跳转到SystemInit处,这是个C语言函数,定义在“system_stm32l1xx.c”文件里,它的目的就是对中断向量表起始地址进行指定,也就是图2中的“__Vector”处。当然CM3内核和CM0内核关于SCB(系统控制块)的定义有些许差别,CM0不在本文讨论中,但是CM3和CM4的中断向量表映射机制还是很相似的。
图4 SystemInit函数映射中断向量表
图4中我们可以看到,SCB中关于Vector的地址是通过符号FLASH_BASE和VECT_TAB_OFFSET计算出来的,我们可以找到关于它们的定义,如图5所示。
图5 FLASH_BASE和VECT_TAB_OFFSET的定义
通过图5中的计算,正好可以得出整个中断向量表被映射到了0x8000000地址处。
STM32的FLASH分配
前面的大段文章内容中,频繁提及了一个关键的数值,即0x8000000,那么这个0x8000000到底是怎么来的呢?这个数值并不是平白无故拍脑袋想出来的。之前我们就说过,ARM体系的存储器结构是其一大特色,而这个0x8000000正是整个STM32内置FLASH的起始地址。我们随便打开一份STM32的数据手册,在存储器章节里面就可以看到STM32全部的存储器定义。如图6所示。
图6 STM32内部FLASH的起始地址
STM32的Bootloader思路
抛开所有的Bootloader高级功能来说,我们设计STM32 Bootloader的主要目的有两个,第一个为方便程序烧写和更新,第二个目前是从Bootloader程序中跳转(引导)用户的应用程序。这两个目的中,对于Bootloader来说程序跳转尤其重要,因为程序跳转成不成功将会严重影响整个用户程序的运行状态。因而,怎么跳,何时跳,跳到哪里,则是下篇文章的着重讨论部分。
前面一个FLASH烧写,可以根据自己的特殊要求来定制,只要严格安装HEX文件指定的地址和数据的关系,一般不会出错。
本文分析了STM32启动时比较重要的一些定义和函数跳转,下篇将会开始着手设计一个STM32 Bootloader。
全部0条评论
快来发表一下你的评论吧 !