张量类Tensor的实现

电子说

1.3w人已加入

描述

关于维度的预备知识

在Tensor张量中,共有三维数据进行顺序存放,分别是Channels(维度),Rows(行高), Cols(行宽),三维矩阵我们可以看作多个连续的二维矩阵组成,最简单的方法就是使用嵌套的vector数组,但是这种方法非常不利于数据的访问(尤其是内存不连续的问题)修改以及查询,特别是在扩容的时候非常不方便,能满足使用需求。

因此,综合考虑灵活性和开发的难易度,我们会以Armadillo类中的arma::mat(矩阵 matrix)类和arma::cube作为数据管理(三维矩阵)类来实现Tensor 我们库中类的主体,一个cube由多个matrix组成,cube又是Tensor类中的数据实际管理者。

首先我们讲讲Tensor类和Armadillo中两个类的关系,可以从下方图看出Tensor类中的数据均由arma::cube类进行管理扩充,我们设计的类以arma::cube为基础实现了Tensor类,我们主要是提供了更方便的访问方式和对外接口。

tensorflow

arma::cube是一个三维矩阵,分别是通道维度(slices或者channels),行维度(rows)和列维度(cols),请看下图1, 图中是两个5行3列的矩阵,蓝色的区域是数据的实际存储区,灰色和和白色部分仅用作示意,在内存中实际不存在。

tensorflow

一个cube类由多个这样的Matrix组成,图1中表示的情况是arma::cube(2, 5, 3), 表示当前的三维矩阵共有2个矩阵构成,每个矩阵都是5行3列的。如果放在我们项目中会以这形式提供 Tensor tensor(2, 5, 3).

下图2是这种情况下的三维结构图,可以看出一个Cube一共有两个Matrix,也就是共有两个Channel. 一个Channel放一个Matrix. Matrix的行宽均为Rows和Cols.

tensorflow

Tensor方法总览

我们从上面可以知道,我们的Tensor类是对armdillo库中cube类的封装,cube是多个Matrix的集合(二维矩阵的集合),关系图如上图1、图2.  我们在这里对KuiperInfer中Tensor类的方法进行一个总览,其中我们会让大家亲自动手实现两个方法(加粗的两个),只有动手起来才能参与其中。

类名 功能
rows() 返回Tensor的行数
cols() 返回Tensor的列数
Fill(float value) 填充Cube中的数据,以value值填充
「Padding(std::vectorvalues)」 调整Matrix的维度,让Rows和Cols变大一点:)
at(uint32_t channel,  row,  col) 返回Cube中第channel维,第row行,第col列的数据。
index(uint32_t offset) 以另外一种方法来返回数据,返回Cube中第offset个数据,比如说在row行,col列,c维的一个数据,除了可以用tensor.at(c, row, col)方法访问。我们也可以通过tensor.index(c × Rows × Cols + row × Cols + col)这种方式来访问。可以参考图4, 展平后的Matrix, at接口更适合用来存放展平后的数据。
「Fill(std::vectorvalues)」 另外一个Fill方法, 我们需要以values中的所有数据去填充Tensor中的数据管理器cube类,注意values中数据的数量要等于Cube的行数×列数×维度
Flatten() 将三维的矩阵展开铺平为一维的。

tensorflow

Tensor类模板

Tensor共有两个类型,一个类型是Tensor,另一个类型是Tensor, Tensor 可能会在后续的量化课程中进行使用,目前还暂时未实现,所以在之后的文章中我们以Tensor来指代Tensor.

如何创建一个Tensor

Tensor tensor(3, 5, 3). 在我们的KuiperInfer项目中,我们可以用一个非常简单的方式来创建一个张量实例,在如上的定义中,我们得到了一个通道数量为3,行数(rows)为5,列数(cols)为3的tensor变量。

如何访问Tensor中数据(我们要大家实现的功能)

我们将在这个项目中为Tensor类定义多种访问内部数据的方式。首先要讲的是顺序访问方式,在tensor变量中,我们可以使用tensor.at(0, 1, 2)得到tensor变量中第0通道,第1行,第2列中存放的元素。

另外一种,我们可以使用tensor.index(0)这种方法来得到tensor变量中第0个数据 。我会在作业系统中给予大家充分的提示,让大家准确无误地把代码写出来。从下图中可以看出,tensor.at(0,1,2)就是访问图中对应位置的点。第1个矩阵(channel = 0)中第2行(row = 1),第3列(col=2)中的数据。

tensorflow

再谈谈Tensor类中数据的排布

我们以具体的图片作为例子,来讲讲Tensor中数据管理类arma::cube的数据排布方式,Tensor类是arma::cube对外更方便的接口,所以说armadillo::cube怎么管理内存的,Tensor类就是怎么管理内存的,希望大家的能理解到位。

如下图中的一个Cube,Cube的维度是2,每个维度上存放的是一个Matrix,一个Matrix中的存储空间被用来存放一张图像(lena) . 一个框内(channel) 是一个Matrix,Matrix1存放在Cube第1维度(channel 1)上,Matrix2存放在Cube的第2维度上(channel 2). Matrix1和Matrix2的Rows和Cols均代表着图像的高和宽,在本例中就是512和384.

tensorflow

如果将顺序的一组数据[0,1,2,3,4,5....128]存放到一个大小为4×4的Matrix中,那么大家需要注意一个问题,我们的数据管理类Tensor(arma::cube)是列主序的,这一点和Opencv cv::Mat或者python numpy有一些不同。列主序在内存中的顺序如下表:

tensorflow





审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分