探讨正极材料的发展趋势

描述

随着电动汽车续航里程的增加以及国家补贴的逐渐降低,对动力电池的能量密度要求也越来越高,正极材料也从最初的NCM111向NCM523、NCM622,甚至是NCM811、NCA逐渐过渡,材料的形貌也从二次颗粒向大单晶颗粒过渡,从而提高了能量密度,负极也从人造石墨向复合、高压实石墨、硅碳负极过渡,本文将从各个企业的目前的研发现状以及未来的发展趋势的角度去探讨正极材料的发展趋势。

高电压

高电压

高电压

上图为万向A123动力电池的规划以及目前现状,公司计划今年年底完成230Wh/kg动力电池的量产,但目前还没有具体量产的消息,最新的消息称下个月量产,就让我们拭目以待吧,230Wh/kg选择的是高电压NCM523搭配高电压的体系,从展示的数据来看循环以及安全性能都是不错的,但由于单体电压过高,其搭载的系统也必须是高电压,这可能会给系统的布局带来一定的困难。

对于230Wh/kg以上的体系,万向也给出了自己的布局NCM622-硅碳负极以及NCM811-高能量密度石墨,这符合国内大多数电池厂家的体系选择,至于300Wh/kg的项目,估计要全行业的努力才能实现产业化。

高电压

对于铝塑软包装电池而言,没有了金属外壳的保护,安全性主要靠整个材料体系的选择上下功夫,不燃电解液,高强度隔膜,正极表面包覆技术等等在下一代技术上都会的得到应用。

高电压

高电压

下面来看一下行业巨头CATL的技术发展,这两张PPT主要讲了正极材料设计上的一些理念和思路,通过表面的包覆、纳米化的处理来保证材料在长循环过程中的稳定性,同时通过模拟表明通过包覆以后,在高电压下NCA的活性氧含量是降低的,这样就显著提高了循环性能以及安全性。

高电压

高电压

对于负极而言,CATL很早就开始研究硅材料的应用了,上面两张主要展示了人造SEI膜对于循环过程中材料表面的保护,将破裂和粉化控制在一定范围内,从而提高了硅碳负极的循环性能。

高电压

高电压

下面介绍一下BSAF在高能量密度电池上的进展,通过增加Ni含量以及提高充电的截止电压都能达到提升电池能量密度的目的。

高电压

高电压

通过控制前驱体的粒径大小,粒径分布等参数实现材料的电化学性能,从测试数据也可以看出,宽分布粒径的材料的压实密度优于窄粒径分布的材料,从而可以实现材料的高压实密度。

高电压

高电压

从上面两张图中可以看出,相同粒径下,粒径分布越窄,循环越好,相同粒径分布下,粒径越大,循环越好,同时也说明了材料的选择上需要平衡Ni含量和截止电压,根据需要去选择材料。







审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分