硅片半导体制造工艺详细图文版科普

制造/封装

515人已加入

描述

虽然看过很多半导体制造工艺类的文章,但是对于非科班出身的技术小白来讲,纯文字的术语概念理解起来还是十分模糊,简单科普一下分享给大家!   ▼详细图文版▼

功率半导体

首先将多晶硅和掺杂剂放入单晶炉内的石英坩埚中,将温度升高至1000多度,得到熔融状态的多晶硅

功率半导体

  硅锭生长是一个将多晶硅制成单晶硅的工序,将多晶硅加热成液体后,精密控制热环境,成长为高品质的单晶。

相关概念:   单晶生长:待多晶硅溶液温度稳定之后,将籽晶缓慢下降放入硅熔体中(籽晶在硅融体中也会被熔化),然后将籽晶以一定速度向上提升进行引晶过程。随后通过缩颈操作,将引晶过程中产生的位错消除掉。当缩颈至足够长度后,通过调整拉速和温度使单晶硅直径变大至目标值,然后保持等径生长至目标长度。最后为了防止位错反延,对单晶锭进行收尾操作,得到单晶锭成品,待温度冷却后取出。   制备单晶硅的方法:有直拉法(CZ法)、区熔法(FZ法)。直拉法简称CZ法,CZ法的特点是在一个直筒型的热系统汇总,用石墨电阻加热,将装在高纯度石英坩埚中的多晶硅熔化,然后将籽晶插入熔体表面进行熔接,同时转动籽晶,再反转坩埚,籽晶缓慢向上提升,经过引晶、放大、转肩、等径生长、收尾等过程,得到单晶硅。   区熔法是利用多晶锭分区熔化和结晶半导体晶体生长的一种方法,利用热能在半导体棒料的一端产生一熔区,再熔接单晶籽晶。调节温度使熔区缓慢地向棒的另一端移动,通过整根棒料,生长成一根单晶,晶向与籽晶的相同。区熔法又分为两种:水平区熔法和立式悬浮区熔法。前者主要用于锗、GaAs等材料的提纯和单晶生长。后者是在气氛或真空的炉室中,利用高频线圈在单晶籽晶和其上方悬挂的多晶硅棒的接触处产生熔区,然后使熔区向上移动进行单晶生长。   约85%的硅片由直拉法生产,15%的硅片由区熔法生产。按应用分,直拉法生长出的单晶硅,主要用于生产集成电路元件,而区熔法生长出的单晶硅主要用于功率半导体。直拉法工艺成熟,更容易生长出大直径单晶硅;区熔法熔体不与容器接触,不易污染,纯度较高,适用于大功率电子器件生产,但较难生长出大直径单晶硅,一般仅用于8寸或以下直径。视频中为直拉法 。                                                            

功率半导体

  由于在拉单晶的过程中,对于单晶硅棒的直径控制较难,所以为了得到标准直径的硅棒,比如6寸,8寸,12寸等等。在拉单晶后会将硅锭直径滚磨,滚磨后的硅棒表面光滑,并且在尺寸误差上更小。  

功率半导体

  采用先进的线切割工艺,将单晶晶棒通过切片设备切成合适厚度的硅片。

功率半导体

  由于硅片的厚度较小,所以切割后的硅片边缘非常锋利, 磨边的目的就是形成光滑的边缘,并且在以后的芯片制造中不容易碎片。

功率半导体

  LAPPING是在沉重的选定盘和下晶盘之间加入晶片后,与研磨剂一起施加压力旋转,使晶片变得平坦。  

功率半导体

  蚀刻是去除晶片表面加工损伤的工序,通过化学溶液溶解因物理加工而受损的表层。

功率半导体

  双面研磨是一种使晶片更平坦的工艺,去除表面的小突起。  

功率半导体

  RTP是一种在几秒钟内快速加热晶片的过程,使得晶片内部得点缺陷均匀,抑制金属杂质,防止半导体异常运转。

功率半导体

  抛光是通过表面精密加工最终确保表面工整度的工艺,使用抛光浆与抛光布,搭配适当的温度,压力与旋转速度,可消除前制程所留下的机械伤害层,并且得到表面平坦度极佳的硅片。  

功率半导体

  洗净的目的在于去除硅片经过抛光后表面残留的有机物、颗粒、金属等,以确保硅片表面的洁净度,使之达到后道工序的品质要求。  

功率半导体

  平坦度&电阻率测试仪对抛光洗净后的硅片进行检测,确保抛光后硅片厚度、平坦度、局部平坦度、弯曲度、翘曲度、电阻率等符合客户需求。  

功率半导体

  PARTICLE COUNTING是精密检查晶片表面的工序,通过激光散射方式测定表面缺陷和数量。  

功率半导体

  EPI GROWING是在经过研磨的硅晶片上用气相化学沉积法生长高品质硅单晶膜的工序。

相关概念: 外延生长:是指在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶层,犹如原来的晶体向外延伸了一段。外延生长技术发展于50年代末60年代初。当时,为了制造高频大功率器件,需要减小集电极串联电阻,又要求材料能耐高压和大电流,因此需要在低阻值衬底上生长一层薄的高阻外延层。外延生长的新单晶层可在导电类型、电阻率等方面与衬底不同,还可以生长不同厚度和不同要求的多层单晶,从而大大提高器件设计的灵活性和器件的性能。  

功率半导体

  包装是对最终合格的产品进行包装。  

编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分