汽车电子
无人驾驶路径规划
众所周知,无人驾驶大致可以分为三个方面的工作:感知,决策及控制。 路径规划是感知和控制之间的决策阶段,主要目的是考虑到车辆动力学、机动能力以及相应规则和道路边界条件下,为车辆提供通往目的地的安全和无碰撞的路径。 路径规划问题可以分为两个方面: (一)全局路径规划:全局路径规划算法属于静态规划算法,根据已有的地图信息(SLAM)为基础进行路径规划,寻找一条从起点到目标点的最优路径。 通常全局路径规划的实现包括Dijikstra算法,A*算法,RRT算法等经典算法,也包括蚁群算法、遗传算法等智能算法; (二)局部路径规划:局部路径规划属于动态规划算法,是无人驾驶汽车根据自身传感器感知周围环境,规划处一条车辆安全行驶所需的路线,常应用于超车,避障等情景。通常局部路径规划的实现包括动态窗口算法(DWA),人工势场算法,贝塞尔曲线算法等,也有学者提出神经网络等智能算法。
全局路径规划 - RRT算法原理
RRT算法,即快速随机树算法(Rapid Random Tree),是LaValle在1998年首次提出的一种高效的路径规划算法。RRT算法以初始的一个根节点,通过随机采样的方法在空间搜索,然后添加一个又一个的叶节点来不断扩展随机树。 当目标点进入随机树里面后,随机树扩展立即停止,此时能找到一条从起始点到目标点的路径。算法的计算过程如下: step1:初始化随机树。将环境中起点作为随机树搜索的起点,此时树中只包含一个节点即根节点; stpe2:在环境中随机采样。在环境中随机产生一个点,若该点不在障碍物范围内则计算随机树中所有节点到的欧式距离,并找到距离最近的节点,若在障碍物范围内则重新生成并重复该过程直至找到; stpe3:生成新节点。在和连线方向,由指向固定生长距离生成一个新的节点,并判断该节点是否在障碍物范围内,若不在障碍物范围内则将添加到随机树 中,否则的话返回step2重新对环境进行随机采样; step4:停止搜索。当和目标点之间的距离小于设定的阈值时,则代表随机树已经到达了目标点,将作为最后一个路径节点加入到随机树中,算法结束并得到所规划的路径。 RRT算法由于其随机采样及概率完备性的特点,使得其具有如下优势: (1)不需要对环境具体建模,有很强空间搜索能力; (2)路径规划速度快; (3)可以很好解决复杂环境下的路径规划问题。 但同样是因为随机性,RRT算法也存在很多不足的方面: (1)随机性强,搜索没有目标性,冗余点多,且每次规划产生的路径都不一样,均不一是最优路径; (2)可能出现计算复杂、所需的时间过长、易于陷入死区的问题; (3)由于树的扩展是节点之间相连,使得最终生成的路径不平滑; (4)不适合动态环境,当环境中出现动态障碍物时,RRT算法无法进行有效的检测; (5)对于狭长地形,可能无法规划出路径。
RRT算法Matlab实现
使用matlab2019来编写RRT算法,下面将贴出部分代码进行解释。
1、生成障碍物 在matlab中模拟栅格地图环境,自定义障碍物位置。
%% 生成障碍物 ob1 = [0,-10,10,5]; % 三个矩形障碍物 ob2 = [-5,5,5,10]; ob3 = [-5,-2,5,4]; ob_limit_1 = [-15,-15,0,31]; % 边界障碍物 ob_limit_2 = [-15,-15,30,0]; ob_limit_3 = [15,-15,0,31]; ob_limit_4 = [-15,16,30,0]; ob = [ob1;ob2;ob3;ob_limit_1;ob_limit_2;ob_limit_3;ob_limit_4]; % 放到一个数组中统一管理 x_left_limit = -16; % 地图的边界 x_right_limit = 15; y_left_limit = -16; y_right_limit = 16;
我在这随便选择生成三个矩形的障碍物,并统一放在ob数组中管理,同时定义地图的边界。
2、初始化参数设置 初始化障碍物膨胀范围、地图分辨率,机器人半径、起始点、目标点、生长距离和目标点搜索阈值。
%% 初始化参数设置 extend_area = 0.2; % 膨胀范围 resolution = 1; % 分辨率 robot_radius = 0.2; % 机器人半径 goal = [-10, -10]; % 目标点 x_start = [13, 10]; % 起点 grow_distance = 1; % 生长距离 goal_radius = 1.5; % 在目标点为圆心,1.5m内就停止搜索3、初始化随机树 初始化随机树,定义树结构体tree以保存新节点及其父节点,便于后续从目标点回推规划的路径。
%% 初始化随机树 tree.child = []; % 定义树结构体,保存新节点及其父节点 tree.parent = []; tree.child = x_start; % 起点作为第一个节点 flag = 1; % 标志位 new_node_x = x_start(1,1); % 将起点作为第一个生成点 new_node_y = x_start(1,2); new_node = [new_node_x, new_node_y];4、主函数部分 主函数中首先生成随机点,并判断是否在地图范围内,若超出范围则将标志位置为0。
rd_x = 30 * rand() - 15; % 生成随机点 rd_y = 30 * rand() - 15; if (rd_x >= x_right_limit || rd_x <= x_left_limit ||... % 判断随机点是否在地图边界范围内 rd_y >= y_right_limit || rd_y <= y_left_limit) flag = 0; end调用函数cal_distance计算tree中距离随机点最近的节点的索引,并计算该节点与随机点连线和x正向的夹角。
[angle, min_idx] = cal_distance(rd_x, rd_y, tree); % 返回tree中最短距离节点索引及对应的和x正向夹角cal_distance函数定义如下:
function [angle, min_idx] = cal_distance(rd_x, rd_y, tree) distance = []; i = 1; while i<=size(tree.child,1) dx = rd_x - tree.child(i,1); dy = rd_y - tree.child(i,2); d = sqrt(dx^2 + dy^2); distance(i) = d; i = i+1; end [~, min_idx] = min(distance); angle = atan2(rd_y - tree.child(min_idx,2),rd_x - tree.child(min_idx,1)); end随后生成新节点。
new_node_x = tree.child(min_idx,1)+grow_distance*cos(angle);% 生成新的节点 new_node_y = tree.child(min_idx,2)+grow_distance*sin(angle); new_node = [new_node_x, new_node_y];接下来需要对该节点进行判断: ① 新节点是否在障碍物范围内; ② 新节点和父节点的连线线段是否和障碍物有重合部分。 若任意一点不满足,则将标志位置为0。实际上可以将两个判断结合,即判断新节点和父节点的连线线段上的点是否在障碍物范围内。
for k=1:1:size(ob,1) for i=min(tree.child(min_idx,1),new_node_x):0.01:max(tree.child(min_idx,1),new_node_x) % 判断生长之后路径与障碍物有无交叉部分 j = (tree.child(min_idx,2) - new_node_y)/(tree.child(min_idx,1) - new_node_x) *(i - new_node_x) + new_node_y; if(i >=ob(k,1)-resolution && i <= ob(k,1)+ob(k,3) && j >= ob(k,2)-resolution && j <= ob(k,2)+ob(k,4)) flag = 0; break end end end
在这我采用的方法是写出新节点和父节点连线的直线方程,然后将x变化范围限制在min(tree.child(min_idx,1),new_node_x)max(tree.child(min_idx,1),new_node_x)内,0.01即坐标变换的步长,步长越小判断的越精确,但同时会增加计算量;
步长越大计算速度快但是很可能出现误判,如下图所式。 左图:合适的步长 右图:步长过大 判断标志位若为1,则可以将该新节点加入到tree中,注意保存新节点和它的父节点,同时显示在figure中,之后重置标志位。
if (flag == true) % 若标志位为1,则可以将该新节点加入tree中 tree.child(end+1,:) = new_node; tree.parent(end+1,:) = [tree.child(min_idx,1), tree.child(min_idx,2)]; plot(rd_x, rd_y, '.r');hold on plot(new_node_x, new_node_y,'.g');hold on plot([tree.child(min_idx,1),new_node_x], [tree.child(min_idx,2),new_node_y],'-b'); end flag = 1; % 标志位归位最后就是把障碍物、起点终点等显示在figure中,并判断新节点到目标点距离。若小于阈值则停止搜索,并将目标点加入到node中,否则重复该过程直至找到目标点。
%% 显示 for i=1:1:size(ob,1) % 绘制障碍物 fill([ob(i,1)-resolution, ob(i,1)+ob(i,3),ob(i,1)+ob(i,3),ob(i,1)-resolution],... [ob(i,2)-resolution,ob(i,2)-resolution,ob(i,2)+ob(i,4),ob(i,2)+ob(i,4)],'k'); end hold on plot(x_start(1,1)-0.5*resolution, x_start(1,2)-0.5*resolution,'b^','MarkerFaceColor','b','MarkerSize',4*resolution); % 起点 plot(goal(1,1)-0.5*resolution, goal(1,2)-0.5*resolution,'m^','MarkerFaceColor','m','MarkerSize',4*resolution); % 终点 set(gca,'XLim',[x_left_limit x_right_limit]); % X轴的数据显示范围 set(gca,'XTick',[x_left_limitx_right_limit]); % 设置要显示坐标刻度 set(gca,'YLim',[y_left_limit y_right_limit]); % Y轴的数据显示范围 set(gca,'YTick',[y_left_limity_right_limit]); % 设置要显示坐标刻度 grid on title('D-RRT'); xlabel('横坐标 x'); ylabel('纵坐标 y'); pause(0.05); if (sqrt((new_node_x - goal(1,1))^2 + (new_node_y- goal(1,2))^2) <= goal_radius) % 若新节点到目标点距离小于阈值,则停止搜索,并将目标点加入到node中 tree.child(end+1,:) = goal; % 把终点加入到树中 tree.parent(end+1,:) = new_node; disp('find goal!'); break end5、绘制最优路径 从目标点开始,依次根据节点及父节点回推规划的路径直至起点,要注意tree结构体中parent的长度比child要小1。最后将规划的路径显示在figure中。
%% 绘制最优路径 temp = tree.parent(end,:); trajectory = [tree.child(end,1)-0.5*resolution, tree.child(end,2)-0.5*resolution]; for i=size(tree.child,1):-1:2 if(size(tree.child(i,:),2) ~= 0 & tree.child(i,:) == temp) temp = tree.parent(i-1,:); trajectory(end+1,:) = tree.child(i,:); if(temp == x_start) trajectory(end+1,:) = [temp(1,1) - 0.5*resolution, temp(1,2) - 0.5*resolution]; end end end plot(trajectory(:,1), trajectory(:,2), '-r','LineWidth',2); pause(2);程序运行最终效果如下: 红点都是生成点随机点,绿点是tree中节点,红色路径即为RRT算法规划的路径。 6、路径平滑(B样条曲线) 由于规划的路径都是线段连接,在节点处路径不平滑,这也是RRT算法的弊端之一。一般来说轨迹平滑的方法有很多种,类似于贝塞尔曲线,B样条曲线等。 我在这采用B样条曲线对规划的路径进行平滑处理,具体的方法和原理我后续有时间再进行说明,这里先给出结果: 黑色曲线即位平滑处理后的路径。 多组结果对比 ① 相邻两次仿真结果对比: 可以看出由于随机采样的原因,任意两次规划的路径都是不一样的。 ② 复杂环境下的路径规划。选取一个相对复杂的环境,仿真结果如下: 可以看出RRT算法可以很好解决复杂环境下的路径规划问题。 ③ 狭窄通道下的路径规划。选取一个狭窄通道环境,仿真结果如下: 由于环境采样的随机性,在狭长通道内生成随机点的概率相对较低,导致可能无法规划出路径。
编辑:黄飞
全部0条评论
快来发表一下你的评论吧 !