电池充电/放电
高压快充即为快速充电,衡量单位可用充电倍率(C)表示。充电倍率越大,充电时间越短。依据公式,电池充电的倍率(C)=充电电流(mA)/电池额定容量(mAh)。例如,电池容量为4000mAh,充电电流达到了8000mAh,则充电倍率为8000/4000=2C。
高倍率充电并不是0%-100%的电量都通过大电流充入完成。合理的充电模式共分三个阶段:
阶段一:预充电状态,起到对电芯的保护作用
阶段二:大电流恒流充电,就是我们所说的高倍率充电阶段,这个过程的电量区间往往在20%-80%
阶段三:恒压充电,目的是限压,防止电芯的电压过高,破坏电池结构
一、技术发展
目前市场有多种快充方案。充电时间由电压和电流共同决定,对于充电桩而言:充电时间(h)=电池能量(kWh)/充电功率(kW)。因此,增大充电功率可以缩短充电时长,而充电功率由电压和电流共同决定:功率(kW)=电压(V)*电流(A)。所以想要缩短充电时间,有两种方法:大电流、高电压。
大电流模式
目前推广程度低,特斯拉是代表。大电流充电过程中产生的热量大幅增加,对汽车的散热系统有更高的要求,且能量损失严重、转化效率低,且需要使用更粗的线束。此外,大电流模式仅在10%-20%SOC(荷电状态,指电池剩余可用电量占总容量的百分比,是电池管理系统中最为重要状态之一)进行最大功率充电,其他区间充电功率也有明显下降。
高电压模式
是车厂普遍采用的模式,除减少能耗、提高续航里程外,还有减少重量、节省空间等优点。高电压系统下,电流变小使得整个系统的功率损耗减小,提高效率。若电流不变,汽车的电机驱动效率则会提升,从而增加续航里程、降低电池成本。高电压模式的优点还包括降低高压线束重量,同功率情况下,电压等级的提高可减少高压线束上的电流,使得线束变细,从而降低线束重量、节省安装空间。
由于大电流快充方式的劣势明显,目前高电压成为了快充主要趋势。高电压架构主要分为三类,纯800V高压快充成为主流。
(1)纯800V电压平台:电池包、电机以及充电接口均达到800V,车中只有800V和12V两种电压级别的器件,OBC、空调压缩机、DCDC以及PTC均重新适配以满足800V高电压平台。
纯800V电压平台,优势在于电机电控迭代升级,能量转换效率高;劣势在于电驱的功率芯片需要用SiC全面替代IGBT,零部件成本高。
(2)双400V电池组串并联组合:利用电池管理系统将电池组在串联、并联之间转换,在充电时,两个电池组可串联成800V平台高电压快充;在放电时,两个电池组并联成400V平台供汽车运行时使用,直接使用原有400V的高压部件。
(3)纯800V电压平台+额外DCDC:整车搭载一个800V电池组,在电池组和其他高压部件之间增加一个额外的DCDC将800V电压降至400V,车上其他高压部件仍采用400V电压平台。
但是高压快充的负面效应需要材料和器件升级。国外研究报告显示,当电池进行大功率充电时,会发生三类负面效应:
(1)热效应:高电压只是针对充电桩减小了电流,但对于单体电芯而言,电芯仍要承受电流增大带来的发热问题。在快充条件下,电池内外部的温度差超过10摄氏度,不均匀的热分布以及过高的温度将引发一系列问题:粘结剂解体、电解液分解、SEI钝化膜的损耗以及锂枝晶等。直接导致的危害有:电池循环寿命降低、热失控引发的安全问题。因此,热效应对电池材料体系以及BMS管控系统提出了更高的要求。
(2)锂析出效应:锂离子电池运作的本质就是锂离子在正负极之间的脱嵌运动,然而在高充电倍率下,嵌锂的过程是不均匀的,锂离子会因无法及时嵌入负极石墨层而选择在负极表面沉积,形成锂金属。当锂金属不断沉积,就会形成我们经常听到的锂枝晶。随着充电倍率的增加,负极表面沉积的锂枝晶数量越多。锂枝晶的危害:负极表面锂枝晶的持续生长,可能会刺破隔膜,造成电池内部短路从而导致热失控;锂枝晶在生长过程中会不断消耗活性锂离子,并不可逆转,导致电池容量降低,降低电池使用寿命。
(3)机械效应:在快充条件下,锂离子快速从正极脱出,并嵌入负极,这会造成电池内部极高的锂离子浓度,其结果是活性颗粒之间的应力错配。当应力累积到一定值时,会造成活性颗粒、导电剂、粘结剂以及集流体之间的缝隙增大,并造成活性颗粒的微裂纹增加。直接影响:活性颗粒之间缝隙的增加会显著增加电池的内阻;颗粒微裂纹会降低了电池的循环寿命。为减小或解决上述负面效应,高压快充需要材料体系升级和相应器件升级。
二、政策监管
高压快充行业的行政监管部门为国家电网和发改委。
国家在政策层面极力推动高压快充技术的落地应用。2020年5月国务院发布《2020年政府工作报告》,首次提出“新基建”(新型基础设施建设)概念,将充电基础设施作为七大基础设施之一,纳入“新基建”。2021年中央经济工作会议指出,当前经济面临需求收缩、供给冲击、预期转弱三重压力,应坚持稳字当头,强化政策发力,充电桩作为新基建组成之一,在稳增长主线下,建设节奏或将加速。
2022年1月,国家发展改革委、国家能源局等出台《国家发展改革委等部门关于进一步提升电动汽车充电基础设施服务保障能力的实施意见》,提出到“十四五”末,我国电动汽车充电保障能力进一步提升,形成适度超前、布局均衡、智能高效的充电基础设施体系,能够满足超过2,000万辆电动汽车充电需求。多项政策落地,使得我国新能源充电桩行业的发展方向和发展目标逐渐清晰,为行业发展提供有益土壤。
政府补贴从补车转向补桩,从建设补贴拓展到运营补贴。2016年财政部等五部门出台《关于“十三五”新能源汽车充电基础设施奖励政策及加强新能源汽车推广应用的通知》,已对充电基础设施建设、运营给予财政奖补。2022年国家发展改革委等部门《关于进一步提升电动汽车充电基础设施服务保障能力的实施意见》明确提出加大财政金融支持力度,一是优化财政支持政策,二是提高金融服务能力。
此外各地方政府已明确出台充电桩建设补贴、充电运营补贴相关政策。可以发现政府财政补贴政策向供给侧倾斜,呈现出从“新能源汽车补贴”到“充电设施建设补贴”再逐渐转变为“充电设施建设补贴+充电设施运营补贴”。
充电枪充电桩发展助力高压快充行业。2022年各省份出台一系列政策推动新能源充电设施的建设,预计未来车桩比将逐步降低至2:1。根据中国充电联盟数据,截止2021年,我国新能源汽车保有量为784万辆,充电桩总数仅为261万座,其中公共桩数量为114.7万座,私人充电桩为147.1万座,车桩比约为3:1。
三、行业发展和驱动因子
政策驱动
2022年国家定调“稳增长”,充电桩、换电站的投资建设作为“新基建”系列,有望迎来风口。比如,近一点的,7月19日,交通运输部召开部务会,审议了《加快推进公路沿线充电基础设施建设行动方案》,将公路沿线充电基础设施划归到落实国务院稳住经济的一揽子政策措施之下。
北京是力争到2025年全市新能源汽车累计保有量力争达到200万辆,充电桩累计建成70万个;上海是计划到2025年满足125万辆以上电动汽车的充电需求,全市车桩比不高于2∶1。安徽力争到2025年汽车生产规模超300万辆,各类充电桩23.7万个,充电站4750座。政策层面早已吹响号角,高压快充的席卷而来势必也会引起产业层面一定程度的动荡与重塑。
汽车电动化的驱动
电动汽车发展步入高速增长阶段。EVTank数据显示,2021年,全球新能源汽车销量达到670万辆,同比大幅度增长102.4%,全球汽车电动化渗透率也由2015年0.8%增长到2021年的7.74%,预计2022年、2025年全球新能源汽车销量将分别超过850万辆、2200万辆。乘联会数据显示,9月新能源汽车零售渗透率达到31.8%,预计2022年、2025年我国新能源汽车销量将超过600万辆、1000万辆。
截至2022年9月底,新能源汽车保有量达1149万辆,前三季度新注册登记371.3万辆。2022年前三季度,全国新注册登记新能源汽车371.3万辆,同比增加184.2万辆,增长98.48%。预计到2025年国内新能源汽车保有量将达到4000万辆,保有量占比将达到10%。
核心部件升级驱动
高压快充导致整车高功率密度提升,运转负荷更大,整车高压系统零部件在性能和安全方面需要升级。除了动力电池电芯材料和设计升级,整车高压部分电气系统零部件需一并升级,主要体现在三个大的方面:
全车热管理系统的总功率 提升、复杂度提高;
针对电气系统的高负荷系统性升级,相关功率器件需要 降低损耗提高效率,其中最明显趋势是,大三电小三电中 SiC 基功率器件替换 Si 基功率器件(重点为电控逆变器中 SiC MOSFET 替代 Si IGBT);
为保障高 负荷下汽车的安全性能,相关的器件比如数字隔离芯片、薄膜电容、连接器、熔断器、继电器等在数量和性能都有提升需求。
三个方面的升级相互关联,具有“连锁”反应。比如 Si 基 IGBT 替换成 SiC 基 MOSFET,工作的功率和频率提升,对应的隔离驱动需要一并升级,而薄膜电容的数量需要提升,才能达到电气系统相关安全性的要求。
四、行业风险分析和风险管理
政策变化风险
行业所处的输配电及控制设备制造行业与国家宏观经济政策、产业政策以及国家电力规划有着密切联系。国民经济发展的周期波动、国家行业发展方向等方面政策变化可能对行业的生产经营造成影响,国家电力投资的力度直接影响输配电行业的发展规模。
市场竞争风险
行业部分细分市场领域的资金门槛和资质壁垒逐渐降低,导致电气机械和器材制造业市场竞争加剧,可能对行业的经营业绩造成一定的不利影响。
应对措施:行业内企业应通过持续自主创新,企业竞争力显著增强,市场开拓力度加大。
原材料价格波动风险
电力输配电及控制设备制造行业产品成本构成中,钢材、有色金属、非金属材料等原材料在总成本中占一定比重。原材料价格的波动将对行业盈利能力产生一定程度的影响。
应对措施:行业内企业将实行统一采购,提高规模效益,并及时关注价格变化趋势,采取灵活措施,规避价格风险。
人才引进风险
行业作为专注于电力、自动化和智能制造的高科技现代行业,高端人才对于行业的发展至关重要。
应对措施:业内企业应积极制定激励机制及人才培养制度,但新兴领域领军人才和复合型高端国际化人才储备不足。培养学科带头人,提升人才队伍整体水平是行业人才队伍建设的重点工作。
新兴领域和行业发展慢于预期的风险
新能源汽车、智能座舱、智能驾驶等是整个行业的发展趋势,但仍存在行业整体商业化进度慢于预期的风险。
应对措施:未来,业内企业应当持续推进新兴领域产品系的布局和新客户的开拓,并利用业内企业在这些新兴业务领域的优势,与上下游公司广泛合作,共同推进汽车的新能源化和智能化。
五、 竞争分析 - SWOT 模型
优势
高电压模式相较高电流模式,具有高效充电区间更大、充电功率天花板较高、技术难度更低等优势,有望成为现阶段快充主流路线。基于高电压的快充能够实现在更大区间SOC保持较高的充电功率;具备相同峰值充电功率的高电流模式,高效充电SOC区间较小,其他区间充电功率下降迅速。
特斯拉采取 400V 高电流路线,第四代快充电流将提升至 900A左右,电路中大电流会产生很高的热损失,包括连接器、电缆、电池的连接、母线排等电阻发热量呈平方级别增长,导致峰值充电功率虽然高,但平均功率不高,充电功率天花板相对高压路线更低。
劣势
快充系统主要由动力电池、动力电池高压线束、VCU、高压控制盒、快充口、直流快充桩等组成。其原理是使锂电池中的锂离子高速运动,瞬间嵌入到电池的负极,这样便是用大电流,在尽可能短的时间内快速给电池充电。
然而汽车使用快充也可能产生不良影响,长期使用快速充电,会因为总在瞬间向电池输入最大电流。会降低电池的还原能力,减少电池充放电的循环次数,也就缩短了电池的寿命。
机遇
85%的车主在公共充电场站平均单次充电时长在0.5-2小时之间,58.1%的车主认为充电排队耗时长。“补能时间长”成为新能源车主用车时遭遇的普遍难题。为缓解电动车用户的补能焦虑,智能电动车企业纷纷加码快充技术和服务的投入。其中,相较于换电模式,高压快充在成本、效率、技术难度方面优势相对明显。
值得一提的是,进入2022年以来,政策对充、换电基础设施建设的支持力度逐步增强,新能源汽车及其产业链相关行业均将获得无限发展空间。
威胁
充电时间的减少在给消费者带来更好体验的同时也给电池带来了考验,电池的充电速度主要取决于锂离子的脱嵌和迁移速率,当采用800V电压平台后,充电倍率最大可达6C(目前普遍为1C)。
但在高充电倍率下,锂离子脱嵌和迁移的速率加快,部分锂离子来不及进入正负极,只能形成一些副产物,导致活性物质损失,加速电池寿命衰减。且动力电池在快充条件下,析锂现象加剧,一方面将造成活性物质的损失,影响电池容量和寿命;另一方面,锂枝晶一旦刺穿隔膜,将导致电池内部短路,造成起火等安全风险。
六、未来展望
海外主流车企、国内传统自主品牌以及新势力纷纷加速布局800V高压平台,2023年更多800V车型将陆续上市。
我国有望于2025年在部分城市实现2-3C公共充电桩的初步覆盖
根据中国汽车工程学会发布的《中国电动车充电基础设施发展战略与路线图研究(2021-2035)》,我国将于2025年实现2-3C的充电桩在重点区域的城市和城际公共充电设施的初步覆盖;于2030年实现3C及以上公共快充网络在城乡区域与高速公路的基本覆盖;在于 2035 年实现 3C 及以上快充在各应用场景下的全面覆盖。充电标准方面,中国电力企业联合会正在加紧制定ChaoJi 标准,将尽快落地。
编辑:黄飞
全部0条评论
快来发表一下你的评论吧 !