一种不需要复杂新硬件的监测呼吸健康的设备

描述

最近,美国国家标准与技术研究所(NIST)开发了一种“BreatheSmart”算法,该算法使用Wi-Fi信号来无线监测呼吸。NIST的科学家称,COVID-19大流行促使他们研发一种不需要复杂新硬件的监测呼吸健康的设备。

虽然NIST的BreatheSmart不是监测呼吸的唯一方法,但与其他方法相比,它确实有很大的优势。由于利用了Wi-Fi标准的信道状态信息,它可以单独部署在软件中,而不需要任何额外的硬件。

wifi信号

本文将研究BreatheSmart算法及其他一些无线呼吸监测方法,以确定其作为一种无创呼吸健康指标的优点和利弊。我们还将讨论NIST技术的未来,以评估如何将其集成到日常生活中。

合二为一

信道状态信息(CSI)有助于补偿部署Wi-Fi路由器的环境。CSI包括有关反射、衰减和由环境变化引起的路径长度变化的信息,将传输和接收到的信号规范化并适当地读出。

wifi信号

除了保护Wi-Fi信号的完整性,该功能还可以记录由生物运动引起的微小环境变化。人体呼吸会引起轻微的胸部运动,这将改变从发射器到接收器的信号路径,这些信息将被编码在Wi-Fi接入点的CSI中。使用适当的算法(如BreatheSmart),这些信息可用于确定呼吸频率并识别有问题的呼吸模式。

使用Wi-Fi监测呼吸

Wi-Fi硬件本身不足以检测到呼吸问题。为了识别和描述异常呼吸模式,CSI使用了深度学习模型。经过预处理、训练和测试后,可以将数据输入到深度学习模型中,以有效地表征所观察到的呼吸模式。

为了训练和测试模型,NIST使用了一个“RespiPro”人体模型。这个人体模型包括一个逼真的气道和可编程的呼吸,通常用于培训医疗专业人员。在这里,它被用于训练深度学习模型。

训练结束后,使用BreatheSmart算法和RespiPro人体模型进行的初步测试显示,识别人体模型呼吸模式的成功率为99.54%。当然,这种测量受到诸如每秒帧数和衰减等各种参数的影响,但仍然是使用现有硬件测量生物运动的初步成功测试。

不间断的健康监测

NIST的算法并不是监测呼吸的唯一方法。超宽带雷达、光学或电容传感等技术都提供了类似的探测小生理运动的能力,但每一种都需要权衡。与BreatheSmart相比,它们都需要额外的硬件才能正常工作。

虽然目前还没有一种适用于所有健康监测的解决方案,但BreatheSmart作为一种廉价、非侵入性的呼吸监测方法显示出前景。研究人员仍在开发和测试算法,以实现改进。例如,研究人员认为CSIR是一种比CSI更可靠的呼吸测量方法。






审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分