机器视觉的工作原理及其与计算机视觉的区别

电子说

1.3w人已加入

描述

【机器视觉的工作原理】

机器视觉检测系统是采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来收取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能。

计算机视觉

【机器视觉特点】

1.摄像机的拍照速度自动与被测物的速度相匹配,拍摄到理想的图像;

2.零件的尺寸范围为2.4mm到12mm,厚度可以不同;

3.系统根据操作者选择不同尺寸的工件,调用相应视觉程序进行尺寸检测,并输出结果;

4.针对不同尺寸的零件,排序装置和输送装置可以精确调整料道的宽度,使零件在固定路径上运动并进行视觉检测;

5.机器视觉系统分辨率达到2448×2048,动态检测精度可以达到0.02mm;

6.废品漏检率为0;

7.本系统可通过显示图像监视检测过程,也可通过界面显示的检测数据动态查看检测结果;

8.具有对错误工件及时准确发出剔除控制信号、剔除废品的功能;

9.系统能够自检其主要设备的状态是否正常,配有状态指示灯;同时能够设置系统维护人员、使用人员不同的操作权限;

10.实时显示检测画面,中文界面,可以浏览几次不合格品的图像,具有能够存储和实时察看错误工件图像的功能;

11.能生成错误结果信息文件,包含对应的错误图像,并能打印输出。

【机器视觉的应用领域】

1.识别

2.标准一维码、二维码的解码

3.光学字符识别(OCR)和确认(OCV)

4.检测

5.色彩和瑕疵检测

6.零件或部件的有无检测

7.目标位置和方向检测和测量

8.尺寸和容量检测

9.预设标记的测量,如孔位到孔位的距离

10.机械手引导

11.输出空间坐标引导机械手精确定位

视觉是人类观察和认知世界的重要手段。随着信息技术的发展,人类逐渐把这种技能赋予计算机、机器人或者其他智能机器,这就是我们今天所要提到的机器视觉技术。

目前机器视觉技术已经实现了产品化、实用化,镜头、高速相机、光源、图像软件、图像采集卡、视觉处理器等相关产品功能日益完善。机器视觉技术在信息化时代正扮演着越来越重要的角色。

与计算机视觉相比,机器视觉偏重于计算机视觉技术工程化,能够自动获取和分析特定的图像,对准确度和处理速度要求都比较高,一般而言,计算机视觉多用来识别“人”,而机器视觉则多用来识别“物”。

具体来讲,计算机视觉应用的场景相对复杂,要识别的物体类型也多,形状不规则、规律性不强,有时甚至很难用客观量作为是被的依据,比如识别年龄、性别,对于光线、距离、角度等条件要求较低;而对准确度和处理速度要求都比较高,一般机器视觉的分辨率远高于计算机视觉,而且往往要求实时,处理速度非常关键。

那么一个典型的机器视觉系统应该包括哪些硬件呢?

一个典型的机器视觉系统包括以下五大块:

照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉光源照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,已达到最佳效果。光源可分为可见光可不可见光。

FOV=所需分辨率亚像素相机尺寸/PRTM(零件测量公差比)

选择镜头时应注意:

按照不同的标准可分为:标准分辨率数字相机和模拟相机

要根据不同的实际应用场合选择不同的相机和高分辨率相机:线扫描CCD和面阵CDD、单色相机和彩色相机

图像采集卡是完整的机器视觉系统的一个部件,但是它扮演的角色非常重要,图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等。

视觉处理器集采集卡与处理器与一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集卡可以快速传输图像到存储器,而且计算机也快很多,所以现在视觉处理器用的少了。

什么是机器视觉系统?

机器视觉系统是指通过机器视觉产品(即图像获取装置,分为CMOS和CCD两种)将被获取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

机器视觉的工作原理:

机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能。

机器视觉与计算机视觉的区别?

计算机视觉,主要是对质的分析,比如分类识别,这是一个杯子那是一条狗。或者做身份确认,比如人脸识别,车牌识别。或者做行为分析,比如人员入侵,徘徊,遗留物,人群聚集等。

机器视觉,主要侧重对量的分析,比如通过视觉去测量一个零件的直径,一般来说,对准确度要求很高。我记得以前接触过一个需求: 视觉测量铁路道岔缺口。

当然,也不能完全按质或量一刀切,有些计算机视觉应用也需要分析量,比如商场的人数统计。有些机器视觉也需要分析质,比如零件自动分拣。

机器视觉是图像技术、模式识别技术以及计算机技术发展的产物,是实现智能化、自动化、信息化的先进技术领域。机器视觉的发展带动了人工智能的进步。

机器视觉系统从物理结构上来讲,一般包括以下几个部分:光源、摄像机和镜头、图像采集卡、机器视觉软件等运动控制部分。在机器视觉系统中,合适的光源为视觉系统提供良好的外界条件,使得系统得到的图像信号有很高的信噪比。

今天我们主要探讨一下光源。

判断机器视觉的照明的好坏,首先必须了解什么是光源需要做到的,光源的作用并不仅仅局限于使检测部件能够被摄像头“看见”,有时候,一个完整的机器视觉系统无法支持工作,很大一部分原因是光源造成的。

照明系统是机器视觉系统中最关键的部分之一,机器视觉光源直接影响到图像的质量,进而影响到系统的性能。好的打光设计能够使我们得到一幅好的图像,从而改善整个系统的分辨率,简化软件的运算。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分