OpenCV的视频处理之人脸检测 1

电子说

1.3w人已加入

描述

目前可依靠模块化方式实现图像处理管道,检测一堆图像文件中的人脸,并将其与漂亮的结构化JSON摘要文件一起保存在单独的文件夹中。

让我们对视频流也可以进行同样的操作。

首先,我们需要捕获视频流。该管线任务将从视频文件或网络摄像头(逐帧)生成一系列图像。接下来,我们将检测每个帧上的脸部并将其保存。接下来的三个块是可选的,它们的目标是创建带有注释的输出视频,例如在检测到的人脸周围的框。我们可以显示带注释的视频并将其保存。最后一个任务将收集有关检测到的面部的信息,并保存带有面部的框坐标和置信度的JSON摘要文件。

如果尚未设置jagin / image-processing-pipeline存储库以查看源代码并运行一些示例,则可以立即执行以下操作:

$ git clone git://github.com/jagin/image-processing-pipeline.git
$ cd image-processing-pipeline
$ git checkout 7df1963247caa01b503980fe152138b88df6c526
$ conda env create -f environment.yml
$ conda activate pipeline

如果已经克隆了存储库并设置了环境,请使用以下命令对其进行更新:

$ git pull
$ git checkout 7df1963247caa01b503980fe152138b88df6c526
$ conda env update -f environment.yml

拍摄影片

使用OpenCV捕获视频非常简单。我们需要创建一个VideoCapture对象,其中参数是设备索引(指定哪个摄像机的数字)或视频文件的名称。然后,我们可以逐帧捕获视频流。

我们可以使用以下CaptureVideo扩展类来实现捕获视频任务Pipeline:

import cv2
from pipeline.pipeline import Pipeline


class CaptureVideo(Pipeline):
    def __init__(self, src=0):
        self.cap = cv2.VideoCapture(src)
        if not self.cap.isOpened():
            raise IOError(f"Cannot open video {src}")


        self.fps = int(self.cap.get(cv2.CAP_PROP_FPS))
        self.frame_count = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))


        super(CaptureVideo, self).__init__()


    def generator(self):
        image_idx = 0
        while self.has_next():
            ret, image = self.cap.read()
            if not ret:
                # no frames has been grabbed
                break


            data = {
                "image_id": f"{image_idx:05d}",
                "image": image,
            }


            if self.filter(data):
                image_idx += 1
                yield self.map(data)


    def cleanup(self):
        # Closes video file or capturing device
        self.cap.release()

使用__init__我们创建VideoCapture对象(第6行)并提取视频流的属性,例如每秒帧数和帧数。我们将需要它们显示进度条并正确保存视频。图像帧将在具有字典结构的generator函数(第30行)中产生:

data = {
    "image_id": f"{image_idx:05d}",
    "image": image,
}

当然,数据中也包括图像的序列号和帧的二进制数据。

检测人脸

我们准备检测面部。这次,我们将使用OpenCV的深度神经网络模块,而不是我在上一个故事中所承诺的Haar级联。我们将要使用的模型更加准确,并且还为我们提供了置信度得分。

从版本3.3开始,OpenCV支持许多深度学习框架,例如Caffe,TensorFlow和PyTorch,从而使我们能够加载模型,预处理输入图像并进行推理以获得输出分类。

有一位优秀的博客文章中阿德里安·罗斯布鲁克(Adrian Rosebrock)解释如何使用OpenCV和深度学习实现人脸检测。我们将在FaceDetector类中使用部分代码:

import cv2
import numpy as np


class FaceDetector:
    def __init__(self, prototxt, model, confidence=0.5):
        self.confidence = confidence


        self.net = cv2.dnn.readNetFromCaffe(prototxt, model)


    def detect(self, images):
        # convert images into blob
        blob = self.preprocess(images)


        # pass the blob through the network and obtain the detections and predictions
        self.net.setInput(blob)
        detections = self.net.forward()
        # Prepare storage for faces for every image in the batch
        faces = dict(zip(range(len(images)), [[] for _ in range(len(images))]))


        # loop over the detections
        for i in range(0, detections.shape[2]):
            # extract the confidence (i.e., probability) associated with the prediction
            confidence = detections[0, 0, i, 2]


            # filter out weak detections by ensuring the `confidence` is
            # greater than the minimum confidence
            if confidence < self.confidence:
                continue


            # grab the image index
            image_idx = int(detections[0, 0, i, 0])
            # grab the image dimensions
            (h, w) = images[image_idx].shape[:2]
            # compute the (x, y)-coordinates of the bounding box for the object
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])


            # Add result
            faces[image_idx].append((box, confidence))


        return faces


    def preprocess(self, images):
        return cv2.dnn.blobFromImages(images, 1.0, (300, 300), (104.0, 177.0, 123.0))
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分