FreeRTOS优化与错误排查方法有哪些

描述

写在前面

主要是为刚接触 FreeRTOS 的用户指出那些新手通常容易遇到的问题。这里把最主要的篇幅放在栈溢出以及栈溢出检测上,因为栈相关的问题是初学者遇到最多的问题。

printf-stdarg.c

当调用 C 标准库 的函数时,栈空间使用量可能会急剧上升,特别是 IO 与字符串处理函数,比如 sprintf()、printf()等。在 FreeRTOS 源码包中有一个名为 printf-stdarg.c 的文件。这个文件实现了一个栈效率优化版的小型 sprintf()、printf(),可以用来代替标准 C 库函数版本。在大多数情况下,这样做可以使得调用 sprintf()及相关函数的任务对栈空间的需求量小很多。

可能很多人都不知道freertos中有这样子的一个文件,它放在第三方资料中,路径为“ FreeRTOSv9.0.0\\FreeRTOS-Plus\\Demo\\FreeRTOS_Plus_UDP_and_CLI_LPC1830_GCC ”,我们发布工程的时候就无需依赖 C 标准库 ,这样子就能减少栈的使用,能优化不少空间。

该文件源码(部分):

1static int print( char **out, const char *format, va_list args )
 2{
 3    register int width, pad;
 4    register int pc = 0;
 5    char scr[2];
 6
 7    for (; *format != 0; ++format) {
 8        if (*format == '%') {
 9            ++format;
10            width = pad = 0;
11            if (*format == '\\0') break;
12            if (*format == '%') goto out;
13            if (*format == '-') {
14                ++format;
15                pad = PAD_RIGHT;
16            }
17            while (*format == '0') {
18                ++format;
19                pad |= PAD_ZERO;
20            }
21            for ( ; *format >= '0' && *format <= '9'; ++format) {
22                width *= 10;
23                width += *format - '0';
24            }
25            if( *format == 's' ) {
26                register char *s = (char *)va_arg( args, int );
27                pc += prints (out, s?s:"(null)", width, pad);
28                continue;
29            }
30            if( *format == 'd' || *format == 'i' ) {
31                pc += printi (out, va_arg( args, int ), 10, 1, width, pad, 'a');
32                continue;
33            }
34            if( *format == 'x' ) {
35                pc += printi (out, va_arg( args, int ), 16, 0, width, pad, 'a');
36                continue;
37            }
38            if( *format == 'X' ) {
39                pc += printi (out, va_arg( args, int ), 16, 0, width, pad, 'A');
40                continue;
41            }
42            if( *format == 'u' ) {
43                pc += printi (out, va_arg( args, int ), 10, 0, width, pad, 'a');
44                continue;
45            }
46            if( *format == 'c' ) {
47                /* char are converted to int then pushed on the stack */
48                scr[0] = (char)va_arg( args, int );
49                scr[1] = '\\0';
50                pc += prints (out, scr, width, pad);
51                continue;
52            }
53        }
54        else {
55        out:
56            printchar (out, *format);
57            ++pc;
58        }
59    }
60    if (out) **out = '\\0';
61    va_end( args );
62    return pc;
63}
64
65int printf(const char *format, ...)
66{
67    va_list args;
68
69    va_start( args, format );
70    return print( 0, format, args );
71}
72
73int sprintf(char *out, const char *format, ...)
74{
75    va_list args;
76
77    va_start( args, format );
78    return print( &out, format, args );
79}
80
81
82int snprintf( char *buf, unsigned int count, const char *format, ... )
83{
84    va_list args;
85
86    ( void ) count;
87
88    va_start( args, format );
89    return print( &buf, format, args );
90}

使用的例子与 C 标准库基本一样:

1int main(void)
 2{
 3    char *ptr = "Hello world!";
 4    char *np = 0;
 5    int i = 5;
 6    unsigned int bs = sizeof(int)*8;
 7    int mi;
 8    char buf[80];
 9
10    mi = (1 << (bs-1)) + 1;
11    printf("%s\\n", ptr);
12    printf("printf test\\n");
13    printf("%s is null pointer\\n", np);
14    printf("%d = 5\\n", i);
15    printf("%d = - max int\\n", mi);
16    printf("char %c = 'a'\\n", 'a');
17    printf("hex %x = ff\\n", 0xff);
18    printf("hex %02x = 00\\n", 0);
19    printf("signed %d = unsigned %u = hex %x\\n", -3, -3, -3);
20    printf("%d %s(s)%", 0, "message");
21    printf("\\n");
22    printf("%d %s(s) with %%\\n", 0, "message");
23    sprintf(buf, "justif: \\"%-10s\\"\\n", "left"); printf("%s", buf);
24    sprintf(buf, "justif: \\"%10s\\"\\n", "right"); printf("%s", buf);
25    sprintf(buf, " 3: %04d zero padded\\n", 3); printf("%s", buf);
26    sprintf(buf, " 3: %-4d left justif.\\n", 3); printf("%s", buf);
27    sprintf(buf, " 3: %4d right justif.\\n", 3); printf("%s", buf);
28    sprintf(buf, "-3: %04d zero padded\\n", -3); printf("%s", buf);
29    sprintf(buf, "-3: %-4d left justif.\\n", -3); printf("%s", buf);
30    sprintf(buf, "-3: %4d right justif.\\n", -3); printf("%s", buf);
31
32    return 0;
33}

栈计算

每个任务都独立维护自己的栈空间, 任务栈空间总量在任务创建时进行设定。uxTaskGetStackHighWaterMark()主要用来查询指定任务的运行历史中, 其栈空间还差多少就要溢出。这个值被称为栈空间的 High Water Mark

函数原型:

1UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )

想要使用它,需要将对应的宏定义打开:INCLUDE_uxTaskGetStackHighWaterMark

函数描述:

参数 说明
xTask 被查询任务的句柄如果传入 NULL 句柄,则任务查询的是自身栈空间的高水线
返回值 任务栈空间的实际使用量会随着任务执行和中断处理过程上下浮动。uxTaskGetStackHighWaterMark()返回从任务启动执行开始的运行历史中,栈空间具有的最小剩余量。这个值即是栈空间使用达到最深时的剩下的未使用的栈空间。这个值越是接近 0,则这个任务就越是离栈溢出不远。

如果不知道怎么计算任务栈大小,就使用这个函数进行统计一下,然后将任务运行时最大的栈空间作为任务栈空间的80%大小即可。即假设统计得到的任务栈大小为常量 A ,那么在创建线程的时候需要 X 大小的空间,那么 X * 80% = A ,算到的 X 作为任务栈大小就差不多了。

运行时栈检测

FreeRTOS 包含两种运行时栈检测机制,由 FreeRTOSConfig.h 中的配置常量configCHECK_FOR_STACK_OVERFLOW 进行控制。这两种方式都会增加上下切换开销。

栈溢出钩子函数(或称回调函数)由内核在检测到栈溢出时调用。要使用栈溢出钩子函数,需要进行以下配置:

  • 在 FreeRTOSConfig.h 中把 configCHECK_FOR_STACK_OVERFLOW 设为 1 或者 2
  • 提供钩子函数的具体实现,采用下面所示的函数名和函数原型。
1void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed portCHAR *pcTaskName );

补充说明:

  • 栈溢出钩子函数只是为了使跟踪调试栈空间错误更容易,而无法在栈溢出时对其进行恢复。函数的入口参数传入了任务句柄和任务名,但任务名很可能在溢出时已经遭到破坏。
  • 栈溢出钩子函数还可以在中断的上下文中进行调用
  • 某些微控制器在检测到内存访问错误时会产生错误异常,很可能在内核调用栈溢出钩子函数之前就触发了错误异常中断。

方法1

configCHECK_FOR_STACK_OVERFLOW 设置为 1 时选用方法 1

任务被交换出去的时候,该任务的整个上下文被保存到它自己的栈空间中。这时任务栈的使用应当达到了一个峰值。当 configCHECK_FOR_STACK_OVERFLOW 设为1 时,内核会在任务上下文保存后检查栈指针是否还指向有效栈空间。一旦检测到栈指针的指向已经超出任务栈的有效范围,栈溢出钩子函数就会被调用。

方法 1 具有较快的执行速度,但栈溢出有可能发生在两次上下文保存之间,这种情况不会被检测到,因为这种检测方式仅在任务切换中检测。

方法2

configCHECK_FOR_STACK_OVERFLOW 设为 2 就可以选用方法 2 。方法 2在方法 1 的基础上进行了一些补充。

当创建任务时,任务栈空间中就预置了一个标记。方法 2 会检查任务栈的最后 20个字节的数据,查看预置在这里的标记数据是否被覆盖。如果最后 20 个字节的标记数据与预设值不同,则栈溢出钩子函数就会被调用。

方法 2 没有方法 1 的执行速度快,但测试仅仅 20 个字节相对来说也是很快的。这种方法应该可以检测到任何时候发生的栈溢出,虽然理论上还是有可能漏掉一些情况,但这些情况几乎是不可能发生的。

其它常见错误

在一个 Demo 应用程序中增加了一个简单的任务,导致应用程序崩溃

可能的情况:

  1. 任务创建时需要在内存堆中分配空间。许多 Demo 应用程序定义的堆空间大小只够用于创建 Demo 任务——所以当任务创建完成后,就没有足够的剩余空间来增加其它的 任务,队列或信号量

  2. 空闲任务是在 vTaskStartScheduler()调用中自动创建的。如果由于内存不足而无法创建空闲任务,vTaskStartScheduler()会直接返回。所以一般在调用 vTaskStartScheduler()后加上一条空循环for(;;) / while(1)可以使这种错误更加容易调试。

    如果要添加更多的任务,可以增加内存堆空间大小(修改配置文件),或是删掉一些已存在的 Demo任务。

在中断中调用一个 API 函数,导致应用程序崩溃

需要做的第一件事是检查中断是否导致了栈溢出。

然后检查API接口是否正确 ,除了具有后缀为FromISR函数名的 API 函数,千万不要在中断服务程序中调用其它 API 函数。

除此之外,还需要注意中断的优先级:

FreeRTOSConfig.h文件中可以配置系统可管理的最高中断优先级数值,宏定义configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY是用于配置basepri寄存器的,当basepri设置为某个值的时候,会让系统不响应比该优先级低的中断,而优先级比之更高的中断则不受影响。就是说当这个宏定义配置为5的时候,中断优先级数值在0、1、2、3、4的这些中断是不受FreeRTOS管理的,不可被屏蔽, 同时也不能调用FreeRTOS中的API函数接口 ,而中断优先级在5到15的这些中断是受到系统管理,可以被屏蔽的,也可以调用FreeRTOS中的API函数接口。

临界区无法正确嵌套

除了 taskENTER_CRITICA()和 taskEXIT_CRITICAL(),千万不要在其它地方修改控制器的中断使能位或优先级标志。这两个宏维护了一个嵌套深度计数,所以只有当所有的嵌套调用都退出后计数值才会为 0,也才会使能中断。

在调度器启动前应用程序就崩溃了

这个问题我也会遇到,如果一个中断会产生上下文切换,则这个中断不能在调度器启动之前使能。这同样适用于那些需要读写队列或信号量的中断。在调度器启动之前,不能进行上下文切换。

还有一些 API 函数不能在调度器启动之前调用。在调用 vTaskStartScheduler()之前,最好是限定只使用创建任务,队列和信号量的 API 函数。

比如有一些初始化需要中断的,或者在初始化完成的时候回产生一个中断,这些驱动的初始化最好放在一个任务中进行,我是这样子处理的,在main函数中创建一个任务,在任务中进行bsp初始化,然后再创建消息队列、信号量、互斥量、事件以及任务等操作。

在调度器挂起时调用 API 函数,导致应用程序崩溃

调用 vTaskSuspendAll()使得调度器挂起,而唤醒调度器调用 xTaskResumeAll()。千万不要在调度器挂起时调用其它 API 函数。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分