氮化镓(GaN)是什么

模拟技术

2414人已加入

描述

  氮化镓(GaN)是什么

  氮化镓是一种无机物,化学式GaN,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性半导体泵浦固体激光器(Diode-pumped solid-state laser)的条件下,产生紫光(405nm)激光。

  GaN,中文名:氮化镓,常温常压下是纤锌矿结构。是现今半导体照明中蓝光发光二极管的核心材料。工业上采用MOCVD和HVPE设备来外延生长。

  基本信息

  中文名氮化镓外文名GaN点群P63mc

  属于第三代半导体材料禁带宽度3.39~3.41eV目录1物理结构2电信

  物理结构

  GaN 半导体材料有二种基本结构:纤锌矿(Wurtzite, WZ)和闪锌矿(Zinc blende, ZB)。常温常压下惟有纤锌矿结构为稳定相。纤锌矿结构由两套六角密堆积子格子沿c 轴方向平移3c/8 套构而形成,所属空间群为或P63mc。

  GAN=Generic access networks ,a telecommunication system that extends mobile voice, data and IP Multimedia Subsystem/Session Initiation Protocol (IMS/SIP) applications over IP networks.(GAN =通用访问网络,一个电信系统扩展移动语音、数据和IP多媒体子系统/会话发起协议(IMS / SIP)应用程序通过IP网络。)

  GaN材料的生长是在高温下,通过TMGa分解出的Ga与NH3的化学反应实现的,其可逆的反应方程式为:

  Ga+NH3=GaN+3/2H2

  生长GaN需要一定的生长温度,且需要一定的NH3分压。人们通常采用的方法有常规MOCVD(包括APMOCVD、LPMOCVD)、等离子体增强MOCVD(PE—MOCVD)和电子回旋共振辅助MBE等。所需的温度和NH3分压依次减少。本工作采用的设备是AP—MOCVD,反应器为卧式,并经过特殊设计改装。用国产的高纯TMGa及NH3作为源程序材料,用DeZn作为P型掺杂源,用(0001)蓝宝石与(111)硅作为衬底采用高频感应加热,以低阻硅作为发热体,用高纯H2作为MO源的携带气体。用高纯N2作为生长区的调节。用HALL测量、双晶衍射以及室温PL光谱作为GaN的质量表征。要想生长出完美的GaN,存在两个关键性问题,一是如何能避免NH3和TMGa的强烈寄生反应,使两反应物比较完全地沉积于蓝宝石和Si衬底上,二是怎样生长完美的单晶。为了实现第一个目的,设计了多种气流模型和多种形式的反应器,最后终于摸索出独特的反应器结构,通过调节器TMGa管道与衬底的距离,在衬底上生长出了GaN。同时为了确保GaN的质量及重复性,采用硅基座作为加热体,防止了高温下NH3和石墨在高温下的剧烈反应。对于第二个问题,采用常规两步生长法,经过高温处理的蓝宝石材料,在550℃,首先生长250A0左右的GaN缓冲层,而后在1050℃生长完美的GaN单晶材料。对于 Si衬底上生长GaN单晶,首先在1150℃生长AlN缓冲层,而后生长GaN结晶。生长该材料的典型条件如下:

  NH3:3L/min

  TMGa:20μmol/minV/Ⅲ=6500

  N2:3~4L/min

  H2:2<1L/min

  人们普遍采用Mg作为掺杂剂生长P型GaN,然而将材料生长完毕后要在800℃左右和在N2的气氛下进行高温退火,才能实现P型掺杂。本实验采用 Zn作掺杂剂,DeZ2n/TMGa=0.15,生长温度为950℃,将高温生长的GaN单晶随炉降温,Zn具有P型掺杂的能力,因此在本征浓度较低时,可望实现P型掺杂。

  但是,MOCVD使用的Ga源是TMGa,也有副反应物产生,对GaN膜生长有害,而且,高温下生长,虽然对膜生长有好处,但也容易造成扩散和多相膜的相分离。中村等人改进了MOCVD装置,他们首先使用了TWO—FLOWMOCVD(双束流MOCVD)技术,并应用此法作了大量的研究工作,取得成功。双束流MOCVD生长示意图如图1所示。反应器中由一个H2+NH3+TMGa组成的主气流,它以高速通过石英喷平行于衬底通入,另一路由H2+N2 形成辅气流垂直喷向衬底表面,目的是改变主气流的方向,使反应剂与衬底表面很好接触。用这种方法直接在α—Al2O3基板(C面)生长的GaN膜,电子载流子浓度为1×1018/cm3,迁移率为200cm2/v·s,这是直接生长GaN膜的最好值。

  第三代半导体材料以氮化镓、碳化硅、氧化锌、金刚石为代表,是5G时代的主要材料,其中氮化镓和碳化硅的市场和发展空间最大。

  受到外围市场和国际环境的影响,A股近期走势非常弱,但有一个新概念受到了市场的热炒,那就是氮化镓。炒作往往是盲目的,很多人其实根本不知道这是一种什么物质,先科普一下氮化镓(GaN)。

  从化学命名就可以看出,这是由氮和镓两种离子组成的一种半导体材料,在物理特性上,其禁带宽度大于2.2eV,又被称为宽禁带半导体材料,也就是国内常说的第三代半导体材料的一种,实际上市场关注的并不只是氮化镓,而是第三代半导体材料。

  根据媒体的消息,中国正在规划将大力支持发展第三代半导体产业写入“十四五”规划之中,计划在2021到2025年的五年之内,举全国之力,在教育、科研、开发、融资、应用等等各个方面对第三代半导体发展提供广泛支持,以期实现产业独立自主,不再受制于人。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 相关推荐

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分