ChatGPT对GPU算力的需求测算与分析

描述

GPGPU的核心壁垒是高精度浮点计算及CUDA生态。从高精度浮点计算能力来看,国内GPU产品与国外产品的计算性能仍或有一代以上差距;在软件和生态层面与英伟达CUDA生态的差距则更为明显。

AI计算GPU领域,国内壁仞科技发布的BR100产品在FP32单精度计算性能上实现超越NVIDIA A100芯片,但是不支持FP64双精度计算;天数智芯推出的天垓100的FP32单精度计算性能实现超越A100芯片,但是在INT8整数计算性能方面却低于A100;海光推出的DCU实现了FP64双精度浮点计算,但是其性能为A100的60%左右,大概相当于其4年前水平。因此,从高精度浮点计算能力来看,国内GPU产品与国外产品的计算性能仍或有一代以上差距。

虽然目前国内产品的计算性能和软件生态实力与国际厂商还有差距,但是,国内厂商依然在奋起直追,努力实现GPGPU的国产化突破。长久来看,美国对中国高端GPU的禁售令反而给国产GPGPU和AI芯片厂商带来快速发展的机会。

短期来看,我们认为对高端通用计算GPU的禁令可能会影响英伟达和AMD的GPU产品在中国的销售,中国AI计算、超级计算和云计算产业进步受到一定的阻碍。可使用英伟达和AMD还没有被禁止的及国产厂商的中高计算性能CPU、GPU、ASIC芯片等替代。

长期来看,国产CPU、GPU、AI芯片厂商受益于庞大的国内市场,叠加国内信创市场带来国产化需求增量,我们预期国内AI芯片的国产化比例将显著提升,借此机会进行产品升级,逐渐达到国际先进水平,突破封锁。

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

芯片

本文选自“ChatGPT对GPU算力的需求测算与相关分析”,以上为部分内容,完整报告请参看原文。

审核编辑 :李倩

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分