导读
本文先从图像特征开始介绍,后分点阐述特征子和描述子的相关分类及特点,最后以图像展示了特征匹配的关系,完整的叙述了整个建模过程中特征点检测与匹配的知识。
一、图像特征介绍
1、图像特征点的应用
-
相机标定:棋盘格角点阴影格式固定,不同视角检测到点可以得到匹配结果,标定相机内参
-
图像拼接:不同视角匹配恢复相机姿态
-
稠密重建:间接使用特征点作为种子点扩散匹配得到稠密点云
-
场景理解:词袋方法,特征点为中心生成关键词袋(关键特征)进行场景识别
2、图像特征点的检测方法
-
人工设计检测算法:sift、surf、orb、fast、hog
-
基于深度学习的方法:人脸关键点检测、3D match点云匹配
-
场景中的人工标记点:影视场景背景简单的标记,特殊二维码设计(快速,精度低)
3、图像特征点的基本要求
-
差异性:视觉上场景上比较显著点,灰度变化明显,边缘点等
-
重复性:同一个特征在不同视角中重复出现,旋转、光度、尺度不变性
二、特征检测子
1、Harris 角点检测(早期,原理简单,视频跟踪,快速检测)
梦寐mayshine:角点检测(2) - harris算子 - 理论与Python代码
https://zhuanlan.zhihu.com/p/90393907
-
动机:特征点具有局部差异性
-
以每个点为中心取一个窗口,例如,5×5/7×7的像素,描述特征点周围环境
-
此点具有差异性->窗口往任意方向移动,则周围环境变化较大->具有局部差异性
-
最小二乘线性系统
-
加和符号:表示窗口内每个像素
-
w:表示权重,权值1或者以点为中心的高斯权重(离点越近权重越大)
-
I:表示像素,RGB/灰度
-
u,v:窗口移动的方向
-
H:harris矩阵,由两个方向上的梯度构建而成
-
图像梯度:
-
Harris矩阵:
-
Harris矩阵H 的特征值分析
-
两个特征值反映相互垂直方向上的变化情况,分别代表变化最快和最慢的方向,特征值大变化快,特征值小变化慢
-
λ1 ≈ λ2 ≈ 0, 两个方向上变化都很小,兴趣点位于光滑区域
-
λ1 > 0 , λ2 ≈ 0 ,一个方向变化快,一个方向变化慢,兴趣点位于边缘区域
-
λ1 , λ2 > 0 , 两个方向变化都很快,兴趣点位于角点区域(容易判断)
-
Harris角点准则代替矩阵分解:
-
反映特征值情况,trace为迹
-
k的值越小,检测子越敏感
-
只有当λ1和λ2同时取得最大值时,C才能取得较大值
-
避免了特征值分解,提高检测计算效率
-
非极大值抑制(Non-maximal Suppression) 选取局部响应最大值,避免重复的检测
-
算法流程:
-
0)滤波、平滑,避免出现阶跃函数
-
1)计算图像水平和垂直方向的梯度
-
2)计算每个像素位置的Harris矩阵
-
3)计算每个像素位置的Harris角点响应值
-
3+)非极大值抑制
-
4)找到Harris角点响应值大于给定阈值且局部最大的位置作为特征点
-
检测结果:
2、基于LoG的多尺度特征检测子
-
动机:Harris角点检测不具有尺度不变性,让特征点具有尺度不变性
-
解决方法:尺度归一化LoG算子,处理尺度的变化
-
LoG算子:Lindeberg(1993)提出Laplacian of Gaussian (LoG)函数的极值点对应着特征点
-
尺度空间: 一副图像使用不同大小滤波核滤波(e.g.高斯滤波),越大的滤波核越模糊,分辨率越小,不同滤波核滤波后的空间为尺度空间=3维空间(图像+尺度),模拟人类视觉,较远物体模糊,一系列滤波核构成的不同分辨率图像为尺度空间->LoG能够处理不同尺度的图像
-
LoG算子[1]形式:高斯滤波性质:卷积->求拉普拉斯算子==求拉普拉斯算子->卷积 其中 是LoG算子
-
尺度归一化LoG[2](使得具有可比性=汇率):其中 是尺度归一化LoG算子
-
不同尺度下的LoG响应值不具有可比性
-
构建尺度空间,同时在位置空间和 尺度空间寻找归一化LoG极值(极大 /极小)点作为特征点
-
不同尺度下 的响应值
-
LoG特征检测算法流程
-
1)计算不同尺度上的尺度归一化LoG函数值
-
2)同时在位置和尺度构成的三维空间上寻找 尺度归一化LoG的极值点
-
3)进行非极大值抑制,减少重复检测 (去除冗余、保持稳定性)
-
检测结果:效果好,LoG计算量大
3、基于DoG的多尺度特征检测子(SIFT)——稳定和鲁棒
-
LoG可以由DoG近似:Lowe(2004)提出归一化LoG近似等价于相邻尺度的高斯差分(DoG)
-
高斯空间:
-
高斯差分DoG:相邻的空间做差,极点处对应特征点
-
特征点位置的确定:
-
1)尺度空间和图像空间上:3*3窗口,26个邻域,找极值点比其他都要大DoG,LoG找极大值或极小值
-
2)横轴向代表离散位置,纵轴代表DoG响应值,在极值点邻域内求二阶函数的极值=准确像素位置
-
亚像素特征点位置的确定
-
x: 为三维,坐标空间+尺度空间
-
f(x): 为DoG值
-
x0: 检测到离散坐标下的极大值点
-
任务:在x0附近近似一个二阶函数,求二阶函数极值得到更准确的亚像素极值位置
-
极值点有可能是边缘点,->除去边缘点:DoG在边缘处值较大,需要避免检测到边缘点
-
计算主方向:通过统计梯度直方图的方法确定主方向,使算法具有旋转不变性
4、快速特征点检测方法:——实时性要求高
-
Oriented FAST (ORB)
-
获取尺度不变性:构建图像金字塔,在金字塔 每一层上检测关键点
-
获取旋转不变性 :通过灰度质心法(Intensity Centroid) 确定图像主方向
-
图像块B上的矩定义为:
-
图像块B的质心定义为 :
-
计算方向角 :
-
检测结果:
三、特征描述子
特征描述子 Feature Descriptor
-
每个特征点独特的身份认证
-
同一空间点在不同视角的特征点具有高度相似的描述子
-
不同特征点的的描述子差异性尽量大
-
通常描述子是一个具有固定长度的向量
特征支持区域
-
主方向:进行旋转并重新插值
-
特征尺度:影响支持区域的大小
1、基于直方图的描述子
(1)用于微小运动的描述子 [4](e.g.相邻两帧视频)
-
定义:以特征点为中心的矩形区域内所有像素的灰度值作为描述子
-
特性:适用于微小变化的图像对 图像存在明显的旋转、尺度、光照和透视变换时不稳定
(2)Sift描述子——旋转主方向
-
定义:根据主方向对支持区域进行旋转,并通过双线性插值重构
-
特性:图像归一化处理,去除光照变化
-
统计局部梯度信息流程:
-
1)将区域划分成4x4的block ;
-
2)每个block内统计梯度方向 的直方图(高斯加权梯度作为系数)
(2)Sift描述子——生成描述子
(2)Sift描述子——归一化处理
-
处理方式
-
1)门限处理-直方图每个方向的梯度幅值不超过0.2
-
2)描述子长度归一化
-
特性:归一化处理提升了特征点光度变化的不变性
-
SIFT描述子变种:PCA-SIFT/SURF
(3)GLOH描述子[5]:Gradient Location-orientation Histogram
-
一共有1+2x8=17 个blocks
-
每个blocks计算16个方向的直方图
-
描述子共16x17=272维
-
通过PCA可以降维到128
(4)DAISY描述子[6]:每个圆的半径对应高斯的尺度
2、基于不变性的描述子
3、二进制描述子——BRIEF
-
描述子形式:描述向量由N个0或者1组成 N=128,256,512
-
描述子特性:生成速度快(汉明距离),匹配效率高 ,简单有效;不具有旋转不变性
-
描述子流程:
-
1)图像进行如高斯滤波预处理——去除噪声
-
2)在支持区域内随机采样N对大小5×5的patch
-
3)比较patch内像素和的大小,并保留结果构成特征向量 $ au(p;x,y)=left{ egin{aligned} 1, ifp(x)
四、特征匹配
计算两幅图像中特征描述子的匹配关系
1、距离度量
归一化互相关,1 ->非常匹配,0->不匹配
2、匹配策略
最近邻:加了距离约束,防止孤立点
3、高效匹配
4、特征匹配验证
审核编辑 :李倩