人工智能
深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。 [1]
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。 [1]
下表比较了用于深度学习的著名软件框架、库和计算机程序。
软件 | Apache MXNet | Apache SINGA | BigDL | Caffe |
---|---|---|---|---|
创建者 | Apache Software Foundation | Apache Software Foundation | Jason Dai (Intel) | Berkeley Vision and Learning Center |
初始版本 | 2015 | 2015 | 2016 | 2013 |
软件许可证 | Apache 2.0 | Apache 2.0 | Apache 2.0 | BSD |
开源 | Yes | Yes | Yes | Yes |
平台 | Linux, macOS, Windows,^[37][38]^AWS, Android,^[39]^iOS, JavaScript^[40]^ | Linux, macOS, Windows | Apache Spark | Linux, macOS, Windows^[2]^ |
编写语言 | Small C++ core library | C++ | Scala | C++ |
接口 | C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl, Clojure | Python, C++, Java | Scala, Python | Python, MATLAB, C++ |
OpenMP 支持 | Yes | No | Yes | |
OpenCL 支持 | On roadmap[41] | Supported in V1.0 | Under development[3] | |
CUDA 支持 | Yes | Yes | No | Yes |
自动分化 | Yes[42] | ? | Yes | |
预训练模型 | Yes[43] | Yes | Yes | Yes[4] |
RNN | Yes | Yes | Yes | Yes |
CNN | Yes | Yes | Yes | Yes |
RBM/DBNs | Yes | Yes | No | |
并行执行(多节点) | Yes[44] | Yes | ? | |
积极发展 | Yes | No[5] |
软件 | Chainer | Deeplearning4j | Dlib | Flux |
---|---|---|---|---|
创建者 | Preferred Networks | Skymind engineering team; Deeplearning4j community; originally Adam Gibson | Davis King | Mike Innes |
初始版本 | 2015 | 2014 | 2002 | 2017 |
软件许可证 | BSD | Apache 2.0 | Boost Software License | MIT license |
开源 | Yes | Yes | Yes | Yes |
平台 | Linux, macOS | Linux, macOS, Windows, Android (Cross-platform) | Cross-platform | Linux, MacOS, Windows (Cross-platform) |
编写语言 | Python | C++, Java | C++ | Julia |
接口 | Python | Java, Scala, Clojure, Python (Keras), Kotlin | C++ | Julia |
OpenMP 支持 | No | Yes | Yes | |
OpenCL 支持 | No | No[7] | No | |
CUDA 支持 | Yes | Yes^[8][9]^ | Yes | Yes |
自动分化 | Yes | Computational Graph | Yes | Yes |
预训练模型 | Yes | Yes[10] | Yes | Yes[12] |
RNN | Yes | Yes | No | Yes |
CNN | Yes | Yes | Yes | Yes |
RBM/DBNs | No | Yes | Yes | No |
并行执行(多节点) | Yes | Yes[11] | Yes | Yes |
积极发展 | No[6] | Yes |
全部0条评论
快来发表一下你的评论吧 !