电子说
前言
Subword算法如今已经成为了一个重要的NLP模型性能提升方法。自从2018年BERT横空出世横扫NLP界各大排行榜之后,各路预训练语言模型如同雨后春笋般涌现,其中Subword算法在其中已经成为标配。所以作为NLP界从业者,有必要了解下Subword算法的原理。
目录
BPE(字节对)编码或二元编码是一种简单的数据压缩形式,其中最常见的一对连续字节数据被替换为该数据中不存在的字节。后期使用时需要一个替换表来重建原始数据。OpenAI GPT-2 与Facebook RoBERTa均采用此方法构建subword vector.
停止符""的意义在于表示subword是词后缀。举例来说:"st"字词不加""可以出现在词首如"st ar",加了""表明改字词位于词尾,如"wide st",二者意义截然不同。
每次合并后词表可能出现3种变化:
实际上,随着合并的次数增加,词表大小通常先增加后减小。
例子
输入:
{'l o w ': 5, 'l o w e r ': 2, 'n e w e s t ': 6, 'w i d e s t ': 3}
Iter 1, 最高频连续字节对"e"和"s"出现了6+3=9次,合并成"es"。输出:
{'l o w ': 5, 'l o w e r ': 2, 'n e w es t ': 6, 'w i d es t ': 3}
Iter 2, 最高频连续字节对"es"和"t"出现了6+3=9次, 合并成"est"。输出:
{'l o w ': 5, 'l o w e r ': 2, 'n e w est ': 6, 'w i d est ': 3}
Iter 3, 以此类推,最高频连续字节对为"est"和"" 输出:
{'l o w ': 5, 'l o w e r ': 2, 'n e w est': 6, 'w i d est': 3}
……
Iter n, 继续迭代直到达到预设的subword词表大小或下一个最高频的字节对出现频率为1。
import re, collections
def get_stats(vocab):
pairs = collections.defaultdict(int)
for word, freq in vocab.items():
symbols = word.split()
for i in range(len(symbols)-1):
pairs[symbols[i],symbols[i+1]] += freq
return pairs
def merge_vocab(pair, v_in):
v_out = {}
bigram = re.escape(' '.join(pair))
p = re.compile(r'(?\\S)''(?!\\S)')
for word in v_in:
w_out = p.sub(''.join(pair), word)
v_out[w_out] = v_in[word]
return v_out
vocab = {'l o w ': 5, 'l o w e r ': 2, 'n e w e s t ': 6, 'w i d e s t ': 3}
num_merges = 1000
for i in range(num_merges):
pairs = get_stats(vocab)
ifnot pairs:
break
best = max(pairs, key=pairs.get)
vocab = merge_vocab(best, vocab)
print(best)
# print output
# ('e', 's')
# ('es', 't')
# ('est', '')
# ('l', 'o')
# ('lo', 'w')
# ('n', 'e')
# ('ne', 'w')
# ('new', 'est')
# ('low', '')
# ('w', 'i')
# ('wi', 'd')
# ('wid', 'est')
# ('low', 'e')
# ('lowe', 'r')
# ('lower', '')
在之前的算法中,我们已经得到了subword的词表,对该词表按照子词长度由大到小排序。编码时,对于每个单词,遍历排好序的子词词表寻找是否有token是当前单词的子字符串,如果有,则该token是表示单词的tokens之一。
我们从最长的token迭代到最短的token,尝试将每个单词中的子字符串替换为token。最终,我们将迭代所有tokens,并将所有子字符串替换为tokens。如果仍然有子字符串没被替换但所有token都已迭代完毕,则将剩余的子词替换为特殊token,如。
例子
# 给定单词序列
[“the</w>”, “highestspanw>”, “mountain”]
# 假设已有排好序的subword词表
[“errrr</w>”, “tainspanw>”, “moun”, “est</w>”, “high”, “thespanw>”, “a”]
# 迭代结果
"the" -> ["the"]
"highest" -> ["high", "est"]
"mountain" -> ["moun", "tain"]
编码的计算量很大。在实践中,我们可以pre-tokenize所有单词,并在词典中保存单词tokenize的结果。如果我们看到字典中不存在的未知单词。我们应用上述编码方法对单词进行tokenize,然后将新单词的tokenization添加到字典中备用。
将所有的tokens拼在一起。
例子:
# 编码序列
[“theclass="hljs-name"w>”, “high”, “estclass="hljs-name"w>”, “moun”, “tainclass="hljs-name"w>”]
# 解码序列
“theclass="hljs-name"w> highestclass="hljs-name"w> mountainclass="hljs-name"w>”
WordPiece算法可以看作是BPE的变种。不同点在于,WordPiece基于概率生成新的subword而不是下一最高频字节对。
ULM是另外一种subword分隔算法,它能够输出带概率的多个子词分段。它引入了一个假设:所有subword的出现都是独立的,并且subword序列由subword出现概率的乘积产生。WordPiece和ULM都利用语言模型建立subword词表。
参考资料
https://en.wikipedia.org/wiki/Byte_pair_encoding
https://leimao.github.io/blog/Byte-Pair-Encoding/https://link.zhihu.com/?target=https%3A//arxiv.org/abs/1804.10959)
https://medium.com/@makcedward/how-subword-helps-on-your-nlp-model-83dd1b836f46
https://arxiv.org/abs/1804.10959
全部0条评论
快来发表一下你的评论吧 !