双极性晶体管的结构和工作原理

模拟技术

2414人已加入

描述

双极性晶体管(英语:bipolar transistor),全称双极性结型晶体管(bipolar junction transistor, BJT),俗称三极管,是一种具有三个终端的电子器件,由三部分掺杂程度不同的半导体制成,晶体管中的电荷流动主要是由于载流子在PN结处的扩散作用和漂移运动。

双极性晶体管,它有两个PN结构成,引出三个电极,所以有NPN和PNP两种管子。

三个电极分别从导电区引出,称为发射极、基极和集电极,所对应的区分别称为发射区、基区和集电区。

晶体管

其中,发射区的掺杂浓度很高,用于发射载流子,集电区掺杂较低,但体积比较大,用于收集载流子,基区最薄,且掺杂浓度最低,用于控制载流子。

双极型晶体管的结构

由两个背靠背的PN节构成,两种载流子参与导电----双极型结型晶体管。

两种类型:

晶体管

结构特点: 发射区(e区)掺杂浓度最高;集电区掺杂浓度低于发射区, 且面积大; 基区很薄, 一般在几微米到几十微米,且掺杂浓度最低。

晶体管

双极性晶体管的工作原理

NPN型双极性晶体管可以视为共用阳极的两个二极管接合在一起。在双极性晶体管的正常工作状态下,基极-发射极结(称这个PN结为“发射结”)处于正向偏置状态,而基极-集电极(称这个PN结为“集电结”)则处于反向偏置状态。在没有外加电压时,发射结N区的电子(这一区域的多数载流子)浓度大于P区的电子浓度,部分电子将扩散到P区。同理,P区的部分空穴也将扩散到N区。这样,发射结上将形成一个空间电荷区(也成为耗尽层),产生一个内在的电场,其方向由N区指向P区,这个电场将阻碍上述扩散过程的进一步发生,从而达成动态平衡。这时,如果把一个正向电压施加在发射结上,上述载流子扩散运动和耗尽层中内在电场之间的动态平衡将被打破,这样会使热激发电子注入基极区域。在NPN型晶体管里,基区为P型掺杂,这里空穴为多数掺杂物质,因此在这区域电子被称为“少数载流子”。

晶体管

从发射极被注入到基极区域的电子,一方面与这里的多数载流子空穴发生复合,另一方面,由于基极区域掺杂程度低、物理尺寸薄,并且集电结处于反向偏置状态,大部分电子将通过漂移运动抵达集电极区域,形成集电极电流。为了尽量缓解电子在到达集电结之前发生的复合,晶体管的基极区域必须制造得足够薄,以至于载流子扩散所需的时间短于半导体少数载流子的寿命,同时,基极的厚度必须远小于电子的扩散长度(diffusion length,参见菲克定律)。在现代的双极性晶体管中,基极区域厚度的典型值为十分之几微米。需要注意的是,集电极、发射极虽然都是N型掺杂,但是二者掺杂程度、物理属性并不相同,因此必须将双极性晶体管与两个相反方向二极管串联在一起的形式区分开来。

综合整理自CSDN技术社区、电气笔谈、百度百科

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分