电子说
一个原本高度成熟的市场,由双寡头走向渐有百花齐放之势,在任何领域应该都相当少见。本期封面故事从一些GPU新晋企业的动态出发,讨论如今的数据中心GPU的市场现状和未来趋势。
前两年,在“GTC英伟达开发者大会”的报道中,《国际电子商情》就谈到过:“对英伟达而言,这些年属实是‘黄金时代’——从2015年开始,英伟达的营收和净利润都出现了飙升,这两个值甚至曾一度增长至三位数——英伟达的业绩表现让其看起来不像是一家成熟企业,反倒像是一家刚刚成立的新公司。”
英伟达业绩的井喷式增长,与新业务拓展有着密不可分的关系。观察英伟达过去的股价变化,可以看到从1999至2015年期间,这家公司的股价一直都不温不火,到2015年其股价仅为4-5元美元。但2021年,该公司的股价一度飙升突破300美元(详见图1)。在2015-2021年期间,全球GPU市场发生了什么?


关于数据中心加速器市场的成长空间和市场价值数据,不同分析机构给出的数据量级差别甚大,CAGR(年复合增长率)数据也不一而足。但所有预测都认为,在未来十年内,该市场CAGR将维持两位数的增长,例如前面的Ark Invest就预测称,2020-2030年期间,数据中心加速器将有近7倍的成长。
去年,英伟达创始人兼CEO黄仁勋把数据中心分成了6个大门类:超级计算中心、企业计算数据中心、超级集群(hyperscaler)、云计算数据中心、AI工厂、边缘数据中心。Seeking Alpha曾对这六大板块做过详细分析,大部分面向数据中心的大芯片可依此来分类。
超算数据中心 2021年全球TOP 500超算中有70%采用英伟达GPU,且后来的新系统对英伟达GPU的采用率还在提高。这个超算数据中心的应用包括量子计算、气候预测、化石能源开采、分子建模、物理模拟、空气动力学、核聚变研究等。企业数据中心 企业数据中心是企业内部运营的数据中心,用于IT、财务、医疗健康或者客户数据支持等项目。这一领域的容量很大,也是目前市场争夺的焦点。超级集群此前,IDC针对超级集群数据中心做出过定义,它是占地超过1万平方英尺、超过5,000台服务器的数据中心,它的基础设施规模大且可灵活性缩放,能满足不同客户的需求,Meta、谷歌、阿里巴巴等科技巨头都有这类数据中心。
云计算数据中心 云计算数据中心是通过云来提供服务的基础设施,应用方向如云游戏、自动化客户服务、高级医疗成像等。Canalys的数据显示,2021年英伟达云计算数据中心的市场份额达33%。AI工厂 AI工厂是数据中心的新类别,某些企业开始注重数据的利用,借助AI来做供应链优化、生产制造的预测性维护和流程控制。英伟达的典型客户之一宝马汽车厂的生产线和供应链,就有机器人、AI、数字孪生在AI工厂的充分利用。边缘数据中心 边缘数据中心是相对小型的数据中心,与端侧用户更为接近,达成数据传输的低延迟和高速度。这类数据中心的应用更加广泛,诸如仓库、零售、汽车、机器人、智慧交通等。在这6大门类上,英伟达横向可提供芯片和系统/解决方案产品,纵向还可提供自下而上的全栈软件。不过,笔者认为,虽然英伟达联合OEM厂商或合作伙伴在某些市场达成了先发优势,但是新晋参与者在潜在市场方面的机会仍然非常大。值得一提的是,在不同维度的应用切分上,AI是GPU的重头戏。英伟达Hopper新架构的升级重点也明确地偏向于AI上,这与现阶段AI的大火有很大关系。据Omdia数据显示,单在AI处理器这个门类上,2021年英伟达GPU就占到了全球AI处理器营收的80%以上(不含CPU),这远超过AMD、谷歌、Intel等市场参与者。而AI芯片本身的市场需求也水涨船高。这些年来,无论是初创公司,还是老牌半导体行业企业,都在想方设法加强AI芯片的布局——广义上,GPU也属于AI芯片的一个分支。Ark Invest的预测显示,2021-2025年,数据中心在AI处理器(包括GPU,但不包括CPU)上的花销将增长4倍,金额从50亿美元上升到220亿美元。
统计机构的数据可知,数据中心GPU还有数倍成长空间,英伟达只占据了潜力市场的一部分。英伟达在AI训练方面的市场地位几乎不可撼动,但2021年Cassell和Omdia团队在一份报告中提到,未来几年内其他芯片制造商将吞噬英伟达的市场份额,因为其他类型的AI芯片的市场接受度正越来越高。
这份报告指出,预计到2026年,AI应用方向的GPU所占份额将跌至54%,这个数值在2021年还高达82%。在AI芯片方面,GPU暂时占据了市场价值的大头,随着全球范围内涌现出非常多AI芯片企业,未来还会出现更多的FPGA、TPU及各类AI专用芯片。因此,英伟达在数据中心加速芯片方面正面临着竞争压力,毕竟这一市场还远未成熟,未来有被颠覆的可能性。即便如此,在《国际电子商情》分析师过去的采访中,绝大部分市场参与者仍表示,其对英伟达的存在感到巨大压力。2021年,瀚博在推出AI推理芯片时曾表示,英伟达GPU在AI训练赛道上已具备相当的生态优势,所以瀚博入市的切入点是DSA方向的AI推理芯片。在《国际电子商情》杂志2021年10月刊的封面故事采访中,Graphcore坦言作为数据中心AI芯片企业,公司正在努力拓展应用领域,正基于现有人力物力,将发展方向聚焦到互联网、金融、研究、医疗健康和其他五个部分,无法像英伟达那样,将覆盖到那么广的生态范围。在每年的GTC大会上,英伟达宣布又更新了某个领域的某些软件库,对应性能动辄x倍提升,这都在加大数据中心GPU赛道的难度。但为何仍有那么多企业想要进入这一市场?孙尔俊表示:“GPU在人工智能、科学计算、金融、工业等重点领域都有大量应用场景,相比专用的AI芯片,GPU的通用性更强,落地场景更丰富,应用领域更广阔。大量资本涌入GPU赛道,可反映出市场普遍看好GPU。”同时,他还提到了中国政府政策的推力,尤其“东数西算”工程,以及数字经济的前景。去年,瀚博宣布要做GPU时,《国际电子商情》分析师曾问过瀚博半导体创始人兼CEO钱军“为什么选择进入这样一个压力更大的赛道?”钱军回答道:“过去,瀚博聚焦视频的计算处理,而现在还想做‘像素的产生’,我们会像前期做AI一样,先选择一些行业、领域去做。”Imagination还有一个针对市场的观察预设,David说:“异构计算在崛起,越来越多的企业正做定制化芯片。”这是在英伟达之外,数据中心GPU的市场机会。这可能与Imagination作为IP供应商的角色有关。数据中心市场价值从CPU转向加速器,体现出摩尔定律停滞的无奈。CPU这种更依赖于摩尔定律向前发展的处理器,在HPC方向上正面临着无法满足数字经济高速发展需求的尴尬,所以具备数据高度并行处理能力的加速器变得炙手可热。GPU芯片在数据中心市场还是一个新生儿,针对数据中心GPU的竞争才开启第一局,英伟达暂时在这一局里占了优势,但这不意味着其他市场参与者毫无胜算。END
全部0条评论
快来发表一下你的评论吧 !