随着机器学习(Machine Learning)领域越来越多地使用现场可编程门阵列(FPGA)来进行推理(inference)加速,而传统FPGA只支持定点运算的瓶颈越发凸显。Achronix为了解决这一大困境,创新地设计了机器学习处理器(MLP)单元,不仅支持浮点的乘加运算,还可以支持对多种定浮点数格式进行拆分。
MLP全称Machine Learning Processing单元,是由一组至多32个乘法器的阵列,以及一个加法树、累加器、还有四舍五入rounding/饱和saturation/归一化normalize功能块。同时还包括2个缓存,分别是一个BRAM72k和LRAM2k,用于独立或结合乘法器使用。MLP支持定点模式和浮点模式。
考虑到运算能耗和准确度的折衷,目前机器学习引擎中最常使用的运算格式是FP16和INT8,而Tensor Flow支持的BF16则是通过降低精度,来获得更大数值空间。
而且这似乎也成为未来的一种趋势。目前已经有不少研究表明,更小位宽的浮点或整型可以在保证正确率的同时,还可以减少大量的计算量。因此,为了顺应这一潮流,MLP还支持将大位宽乘法单元拆分成多个小位宽乘法,包括整数和浮点数。
值得注意的是,这里的bfloat16即Brain Float格式,而block float为块浮点算法,即当应用Block Float16及更低位宽块浮点格式时,指数位宽不变,小数位缩减到了16bit以内,因此浮点加法位宽变小,并且不需要使用浮点乘法单元,而是整数乘法和加法树即可,MLP的架构可以使这些格式下的算力倍增。
欢迎加入至芯科技FPGA微信学习交流群,这里有一群优秀的FPGA工程师、学生、老师、这里FPGA技术交流学习氛围浓厚、相互分享、相互帮助、叫上小伙伴一起加入吧!
点个在看你最好看
原文标题:FPGA运算单元对高算力浮点应用
文章出处:【微信公众号:FPGA设计论坛】欢迎添加关注!文章转载请注明出处。
全部0条评论
快来发表一下你的评论吧 !