上一篇博客给大家介绍了使用opencv加载YOLOv5的onnx模型,但我们发现使用CPU进行推理检测确实有些慢,那难道在CPU上就不能愉快地进行物体识别了吗?当然可以啦,这不LabVIEW和OpenVINO就来了嘛!今天就和大家一起看一下如何在CPU上也能感受丝滑的实时物体识别。
OpenVINO是英特尔针对自家硬件平台开发的一套深度学习工具库,用于快速部署应用和解决方案,包含推断库,模型优化等等一系列与深度学习模型部署相关的功能。
特点:
可在如下链接中下载OpenVINO版工具包: 基于LabVIEW可使用opencv DNN模块调用的深度学习工具包
下载地址: 英特尔® Distribution of OpenVINO™ 工具套件
1)点击Dev Tools
2)选择版本,选择如下版本,并DownLoad:
3)下载后,运行安装即可!
4)可以选择安装路径,具体安装可以参考官方文档: https://docs.openvino.ai/cn/latest/openvino_docs_install_guides_installing_openvino_windows.html
openvino工作流程,和其他的部署工具都差不多,训练好模型,解析成openvino专用的.xml和.bin,随后传入Inference Engine中进行推理。这里和上一篇博客一样可以使用export.py导出openvino模型:python export.py --weights yolov5s.pt --include openvino
当然这里已经为大家转换好了模型,大家可以直接下载,下载链接:
如需源码,请关注微信公众号VIRobotics,回复关键词:yolov5_openvino。
CPU模式下,使用openvino进行推理加速,实时检测推理用时仅95ms/frame,是之前加载速度的三分之一
注意:
如果文章对你有帮助,欢迎✌关注、
审核编辑 黄宇
全部0条评论
快来发表一下你的评论吧 !