探讨GAN背后的数学原理(上)

电子说

1.3w人已加入

描述

0 引子

GAN的风暴席卷了整个深度学习圈子,任何任务似乎套上GAN的壳子,立马就变得高大上了起来。那么,GAN究竟是什么呢?

GAN的主要应用目标:

生成式任务(生成、重建、超分辨率、风格迁移、补全、上采样等)

GAN的核心思想: 生成器G和判别器D的一代代博弈

生成器: 生成网络,通过输入生成图像

判别器: 二分类网络,将生成器生成图像作为负样本,真实图像作为正样本

learn 判别器D:

给定G,通过G生成图像产生负样本,并结合真实图像作为正样本来训练D

learn 生成器G:

给定D,以使得D对G生成图像的评分尽可能接近正样本作为目标来训练G

G和D的训练过程交替进行,这个对抗的过程使得G生成的图像越来越逼真,D“打假”的能力也越来越强。

觉得不是很好理解嘛?别着急,慢慢往下看!


1 从极大似然估计说起

补充:

分布的表示:P(x)

表示该分布中采样到样本x的概率,试想如果我们知道该分布中每个样本的采样概率,那么这个分布也就可以以这种形式表示出来了。

确定分布的表示:P(x;

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分