锂电池过充机理及防过充措施

描述

过充是目前锂电池安全测试中较难通过的一项,因此有必要了解过充机理及目前防过充的措施。

图1是NCM+LMO/Gr体系电池过充时的电压和温度曲线。 在5.4V电压达到最大,随后电压下降,最终引发热失控。 三元电池过充的电压和温度曲线与其十分相似。

三元电池

图1

锂电池过充时会产生热量和气体,热量包括欧姆热和副反应产生的热,其中欧姆热占主要。 过充引发的电池副反应,首先是过量的锂嵌入负极,在负极表面会生长锂枝晶(N/P比会影响锂枝晶生长的起始SOC)。 其次是过量的锂从正极脱出,引起正极结构坍塌,放出热量和释放出氧。 氧气会加速电解液的分解,电池内压不断升高,一定程度后安全阀开启。 活性物质和空气的接触会进一步产生更多的热量。

有研究表明减少电解液量会显著减少过充时的产热和产气。 另有研究过充时电池不带夹板或安全阀不能正常开启,电池易发生爆炸。

轻微地过充不会导致热失控,但会引起容量衰减。 研究发现NCM/LMO混合材料为正极的电池过充时,SOC低于120%容量没有明显的衰减,SOC高于130%时容量会衰减显著。

目前解决过充问题的方法大致有一下几种:

1)BMS中设置保护电压,通常保护电压要低于过充时的峰值电压;

2)通过材料改性(如材料包覆)提高电池的抗过充能力;

3)在电解液中添加抗过充添加剂,如氧化还原对;

4)电压敏感膜的使用,电池发生过充时,膜电阻显著降低,起到分流作用;

5)在方形铝壳电池中使用OSD、CID设计,目前是通用的防过充设计。 而软包电池则无法实现类似设计。

本次介绍一下钴酸锂电池在过充时电压和温度的变化。 下图是钴酸锂电池的过充电压和温度曲线,横轴是脱锂量。 负极是石墨,电解液溶剂是EC/DMC。 电池容量为1.5Ah。 充电电流是1.5A,温度是电池内部温度。

三元电池

锂电池过充大致可分为4个区域,每个区域的特征如下:

I区

1.电池电压缓慢上升。 钴酸锂正极脱锂超过60%,在负极侧析出金属锂。

2.电池鼓胀,可能是由于电解液在正极侧高压氧化。

3.温度基本稳定,略有上升。

II区

1.温度开始缓慢升高。

2.在80~95%范围内,正极阻抗增大,电池内阻增加,但在95%有所减小。

3.电池电压超过5V,达到最高。

III区

大约在95%,电池温度开始快速升高。

从大约95%开始,直到接近100%,电池电压稍稍下降。

当电池内部温度达到大约100℃,电池电压急剧下降,可能是温度升高致电池内阻降低所引起的。

IV区

电池内部温度高于135℃,PE隔膜开始融化,电池内阻快速升高,电压达到上限(~12V),电流降至一个较低的值。

在10-12V之间,电池电压不稳定,电流也有波动。

电池内部温度快速升高,电池破裂前温度上升到190-220℃。

电池破裂。

三元电池过充与钴酸锂电池相似,目前市场上的三元方形铝壳电池过充时,大致控制在进入III区时OSD或CID启动,切断电流,保护电池不再过充。

锂电池过充机理及防过充措施(三)

本文通过实验和仿真研究了一款正极为NCM111+LMO的40Ah软包电池的过充性能,过充电流分别为0.33C、0.5C和1C。 电池尺寸为 240mm * 150mm * 14mm。 (按照额定电压3.65V计算,其体积比能量约290Wh/L,比能量还是比较低的)

过充过程中的电压、温度和内阻变化见图1。 可以大致分为四个阶段:

第一阶段:1

第二阶段:1.2

第三阶段:1.4

第四阶段:SOC>1.6,电池内压超限,壳体发生破裂,隔膜收缩变形,电池热失控。 电池内部发生短路,大量能量迅速释放,电池温度急剧上升至780℃。

三元电池

图1

过充中各阶段的副反应示意图见图2。

三元电池

图2

过充过程中的产热包括:可逆熵变热、焦耳热、化学反应热和内短路释放出来的热。 其中化学反应热包括Mn溶解、金属锂与电解液反应、电解液氧化、SEI膜分解、负极分解和正极(NCM111和LMO)分解释放出的热。 表1是各反应的焓变和激活能。 (本文忽略了粘结剂的副反应)

表1

三元电池

图3是不同充电电流过充时的产热率比较。 从图3可以得出以下结论:

1)随着充电电流的增加,热失控时间提前。

2)过充中的产热以焦耳热为主。 SOC<1.2,总产热基本等于焦耳热。

3)在第二阶段(1

4)SOC>1.45,金属锂与电解液反应释放出的热会超过焦耳热。

5)SOC>1.6,SEI膜和负极分解反应开始,电解液氧化反应产热率急剧增加,总产热率达到峰值。 (文献中4、5描述与图有些不符,这里以图为准,做了调整。 )

6)过充过程中,金属锂与电解液反应和电解液氧化是主要的反应。

三元电池

图3

通过上述分析,电解液氧化电位、负极容量和热失控起始温度是过充的三个关键参数。 图4是三个关键参数对过充性能的影响。 可以看出电解液氧化电位的提高能大大提高电池的过充性能,而负极容量对过充性能影响不大。 (换言之,高压电解液有助于提高电池过充性能,增大N/P比对电池过充性能影响不大。 )

三元电池

图4

  审核编辑:汤梓红

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分