MySQL数据如何同步Elasticsearch

描述

今天给大家分享一个电商中常见的场景——MySQL数据如何同步Elasticsearch。

商品检索

大家应该都在各种电商网站检索过商品,检索商品一般都是通过什么实现呢?搜索引擎Elasticsearch。

那么问题来了,商品上架,数据一般写入到MySQL的数据库中,那么用于检索的数据又是怎么同步到Elasticsearch的呢?

MySQL

MySQL同步ES

1.同步双写

这是能想到的最直接的方式,在写入MySQL,直接也同步往ES里写一份数据。

MySQL

同步双写

对于这种方式:

优点:实现简单

缺点:

业务耦合,商品的管理中耦合大量数据同步代码

影响性能,写入两个存储,响应时间变长

不便扩展:搜索可能有一些个性化需求,需要对数据进行聚合,这种方式不便实现

2.异步双写

我们也很容易想到异步双写的办法,上架商品的时候,先把商品数据丢进MQ,为了解耦合,我们一般会拆分一个搜索服务,由搜索服务去订阅商品变动的消息,来完成同步。

MySQL

异步双写

前面说的,一些数据需要聚合处理成类似宽表的结构怎么办呢?例如商品库的商品品类、spu、sku表是分开的,但是查询是跨维度的,在ES里再聚合一次效率就低一些,最好就是把商品的数据给聚合起来,在ES里以类似大宽表的形式存储,这样一来查询效率就高一些。

MySQL

多维度多条件查询

这种其实没什么好办法,基本上还是得搜索服务直接查库,或者远程调用,再查询一遍商品的数据库,就是所谓的回查。

MySQL

回查完成聚合

这种方式:

优点:

解耦合,商品服务无需关注数据同步

实时性较好,使用MQ,正常情况下,同步完成在秒级

缺点:

引入了新的组件和服务,增加了复杂度

3.定时任务

假如我们要快速搞搞,数据量有没那么大,怎么办呢?定时任务也可以。

MySQL

定时任务

定时任务,最麻烦的一点是频率不好选,频率高的话,会非自然地形成业务的波峰,导致存储的CPU、内存占用波峰式上升,频率低的话实时性比较差,而且也有波峰的情况。

这种方式:

优点:实现比较简单

缺点:

实时性难以保证

对存储压力较大

4.数据订阅

还有一种方式,就是最时兴的数据订阅。

MySQL通过binlog订阅实现主从同步,各路数据订阅框架比如canal就依据这个原理,将client组件伪装成从库,来实现数据订阅。

MySQL

MySQL主从同步

我们以应用最广泛的canal为例,canal通过canal-adapter,支持多种适配器,其中就有ES适配器,通过一些配置,启动之后,就可以直接把MySQL数据同步到ES,这个过程是零代码的。

MySQL

canal同步数据

但是,和老板了解过,使用canal看起来很美好,帮我们把同步的事情都干了,但其实,还是要写代码。为什么呢?

前面提到的多张表数据聚合,canal的支持没那么好,所以还是得回查。这时候用canal-adapter就不合适了,需要自己实现canal-client,监听和聚合数据,写入ES:

MySQL

数据订阅+回查

这种看起来和异步双写比较像,但是第一降低了商品服务的耦合,第二数据的实时性更好。

所以使用数据订阅:

优点:

业务入侵较少

实时性较好

至于数据订阅框架的选型,主流的大体上是这些:

  Cancal Maxwell Python-Mysql-Rplication
开源方 阿里巴巴 Zendesk 社区
开发语言 Java Java Python
活跃度 活跃 活跃 活跃
高可用 支持 支持 不支持
客户端 Java/Go/PHP/Python/Rust Python
消息落地 Kafka/RocketMQ 等 Kafka/RabbitNQ/Redis 等 自定义
消息格式 自定义 JSON 自定义
文档详略 详细 详细 详细
Boostrap 不支持 支持 不支持

除了MySQL同步ES,MySQL同步到其它的数据存储,例如HBase,其实大体上都是类似的几种方法。






审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分