Handler的使用
在Android开发中,Handler机制是一个很重要的知识点,主要用于消息通信。
Handler使用的三大步骤:
1、Loop.prepare()。
2、new一个Handler对象,并重写handleMessage方法。
3、Loop.loop()。
先运行实例代码观察现象,再深入分析内部原理。
public class LooperThread extends Thread{ private static final String TAG = LooperThread.class.getSimpleName(); private Handler handler; @Override public void run() { Looper.prepare(); handler = new Handler(Looper.myLooper(), new Handler.Callback() { @Override public boolean handleMessage(@NonNull Message msg) { Log.d(TAG, "what: " + msg.what + ", msg: " + msg.obj.toString()); return true; } }); Looper.loop(); } public void sendMessage(int what, Object obj){ Message msg = handler.obtainMessage(what, obj); handler.sendMessage(msg); } }
public class FirstActivity extends AppCompatActivity { private static final String TAG = FirstActivity.class.getSimpleName(); private LooperThread looperThread; @Override protected void onCreate(Bundle savedInstanceState) { looperThread = new LooperThread(); looperThread.start(); try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } looperThread.sendMessage(1, "Hello android!"); }
编译运行程序,输出如下:
2021-10-06 23:15:24.323 20107-20107/com.example.activitytest D/FirstActivity: Task id is 73 2021-10-06 23:15:25.328 20107-20124/com.example.activitytest D/LooperThread: what: 1, msg: Hello android! 2021-10-06 23:15:25.394 20107-20132/com.example.activitytest I/OpenGLRenderer: Initialized EGL, version 1.4 2021-10-06 23:15:25.394 20107-20132/com.example.activitytest D/OpenGLRenderer: Swap behavior 1
Loop.prepare方法内部实现原理
了解某个方法具体做了什么,最好的方法就是追踪下去看源码。我们跟随IDE一步一步查看Loop.prepare到底做了什么。
/** Initialize the current thread as a looper. * This gives you a chance to create handlers that then reference * this looper, before actually starting the loop. Be sure to call * {@link #loop()} after calling this method, and end it by calling * {@link #quit()}. */ public static void prepare() { prepare(true); } private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }
sThreadLocal是一个ThreadLocal类型变量,且ThreadLocal是一个模板类。Loop.prepare最终创建一个新的Looper对象,且对象实例被变量sThreadLocal引用。继续追踪下去,查看Looper构造方法做了什么操作。
private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); } ...... MessageQueue(boolean quitAllowed) { mQuitAllowed = quitAllowed; mPtr = nativeInit(); }到这里我们已经很清楚,Looper构造方法主要是创建一个MessageQueue,且MessageQueue构造方法调用native方法获取底层queue的指针,mQuitAllowed值为true表示允许退出loop,false表示无法退出loop。结合前面Looper.prepare方法内部代码,表示我们创建的Looper允许退出loop。 new一个Handler对象实例,到底做了什么?
/** * Use the provided {@link Looper} instead of the default one and take a callback * interface in which to handle messages. * * @param looper The looper, must not be null. * @param callback The callback interface in which to handle messages, or null. */ public Handler(@NonNull Looper looper, @Nullable Callback callback) { this(looper, callback, false); } ...... /** * Use the provided {@link Looper} instead of the default one and take a callback * interface in which to handle messages. Also set whether the handler * should be asynchronous. * * Handlers are synchronous by default unless this constructor is used to make * one that is strictly asynchronous. * * Asynchronous messages represent interrupts or events that do not require global ordering * with respect to synchronous messages. Asynchronous messages are not subject to * the synchronization barriers introduced by conditions such as display vsync. * * @param looper The looper, must not be null. * @param callback The callback interface in which to handle messages, or null. * @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for * each {@link Message} that is sent to it or {@link Runnable} that is posted to it. * * @hide */ @UnsupportedAppUsage public Handler(@NonNull Looper looper, @Nullable Callback callback, boolean async) { mLooper = looper; mQueue = looper.mQueue; mCallback = callback; mAsynchronous = async; }
Handler还有其他构造方法,这里我们调用其中一种构造方法创建一个Handler对象实例。该构造方法要求传入一个Looper对象实例和CallBack对象实例。回顾一下最开始的例子代码,我们传入的形参,一个是由Looper.myLooper方法获取的Looper对象实例,另外一个则是Callback匿名类。我们先看看Looper.myLooper到底获取到了什么。
/** * Return the Looper object associated with the current thread. Returns * null if the calling thread is not associated with a Looper. */ public static @Nullable Looper myLooper() { return sThreadLocal.get(); }这里获取到的就是前面Looper.prepare方法新创建的Looper对象实例,所以Looper.prepare方法必须在创建Handler对象实例之前调用。再回到Handler构造方法里,有几个地方很关键: 1、Handler内部保存了Looper对象引用。 2、Handler内部保存了Looper内部的MessageQueue对象引用。 3、Handler内部保存了Callback对象引用。 4、mAsyncchronous值为true表示handleMessage方法异步执行,false表示同步执行。
Looper.loop方法内部实现原理
/** * Run the message queue in this thread. Be sure to call * {@link #quit()} to end the loop. */ public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } if (me.mInLoop) { Slog.w(TAG, "Loop again would have the queued messages be executed" + " before this one completed."); } me.mInLoop = true; final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); // Allow overriding a threshold with a system prop. e.g. // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start' final int thresholdOverride = SystemProperties.getInt("log.looper." + Process.myUid() + "." + Thread.currentThread().getName() + ".slow", 0); boolean slowDeliveryDetected = false; for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } // Make sure the observer won't change while processing a transaction. final Observer observer = sObserver; final long traceTag = me.mTraceTag; long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs; if (thresholdOverride > 0) { slowDispatchThresholdMs = thresholdOverride; slowDeliveryThresholdMs = thresholdOverride; } final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0); final boolean logSlowDispatch = (slowDispatchThresholdMs > 0); final boolean needStartTime = logSlowDelivery || logSlowDispatch; final boolean needEndTime = logSlowDispatch; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0; final long dispatchEnd; Object token = null; if (observer != null) { token = observer.messageDispatchStarting(); } long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid); try { msg.target.dispatchMessage(msg); if (observer != null) { observer.messageDispatched(token, msg); } dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0; } catch (Exception exception) { if (observer != null) { observer.dispatchingThrewException(token, msg, exception); } throw exception; } finally { ThreadLocalWorkSource.restore(origWorkSource); if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (logSlowDelivery) { if (slowDeliveryDetected) { if ((dispatchStart - msg.when) <= 10) { Slog.w(TAG, "Drained"); slowDeliveryDetected = false; } } else { if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery", msg)) { // Once we write a slow delivery log, suppress until the queue drains. slowDeliveryDetected = true; } } } if (logSlowDispatch) { showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg); } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
代码较长,我们只取关键代码阅读。通过myLooper获取新创建的Looper对象实例,进而获取Looper内部的MessageQueue对象实例。然后进入死循环中不断调用MessageQueue类的next方法获取MessageQueue里的message,然后调用dispatchMessage进行消息分发,最后由handleMessage进行消息处理。到这里Looper、MessageQueue和Handler之间的关系就建立起来了。介于篇幅,发送消息和消息处理原理,下篇文章详细分析。
审核编辑:汤梓红
全部0条评论
快来发表一下你的评论吧 !